Resistive Sensors

We will review resistive sensors and examine:

• The Basic Transduction Mechanism
• Some Example Sensors
• Strain Gage Focus
• Common Signal Conditioning Circuits

Prof. R.G. Longoria
March 30, 2000

Resistive Sensing Mechanism

• The measurand directly or indirectly alters the electrical resistance of a resistive element.
• Electrical resistance is a parameter that we use to relate voltage and current.
• Sensing takes advantage of changes in resistance to infer changes in others physical quantities.
• Keep in mind that: Resistance changes because of material or geometry changes.
Resistive Sensing

- For example, for the simple uniform conductor,
 \[R = \frac{\rho L}{A} \]
 with \(\rho \) the resistivity, \(L \) the length and \(A \) the constant cross-sectional area through which current flows. This is only for simple case, but it is helpful in understanding trends.

- **Resistance** is altered either by a geometric \((A, L)\) or material change \((\rho)\) in the resistive element.

- **Resistance** can be directly measured (by an ohmmeter) or through a signal conditioning circuit (e.g., a voltage-divider).

Potentiometric Sensors

- Basic circuit
- Input voltage
- Output voltage
- Resistance wire
- Sliding contact
- \(R = \frac{\rho L}{A} \)
- Angular slider
- Resistor (conductive) element:
 - Wire-wound
 - Cermet
 - Conductive plastic
- \(\Delta x \) defines resolution
Other R-Sensors

- Thermistors (temperature-sensitive), these are semiconductor type devices

- Light-dependent resistors (CdS, CdSe, and CdTe), react to light, increasing charge carriers make effective resistance of device decrease

A Resistive Level Sensor

Signal conditioning: ac -> dc
Piezoresistive Effect

- When the resistive (or conductive) material itself is elongated or compressed due to a mechanical input, there can be changes in the electrical conductive characteristics and this is referred to as a piezoresistive effect.

\[\sigma \varepsilon = F \]

- Lord Kelvin provided such an insight in 1856 when he showed that the resistance of copper and iron wire change when the wires are subjected to mechanical strain.

\[\varepsilon \equiv \frac{\Delta l}{l} \]

Strain Gages

Strain gages exhibit piezoresistive behavior, and are one of the most common ways to measure strain.

Types

- **unbonded wire** - basically a wire under strain (c. 1940s)
- **foil** - type shown to left (c. 1950s) are most common
- **semiconductor** (c. 1960s)
Piezoresistivity (1)

We know that for a conductor of uniform area, the resistance is given by,

\[R = \frac{\rho l}{A} \]

where \(\rho \) is the resistivity (cm ohm), \(l \) is the length, and \(A \) is the cross-sectional area.

Under strain, the change in \(R \) is,

\[dR = \frac{\partial R}{\partial l} dl + \frac{\partial R}{\partial A} dA + \frac{\partial R}{\partial \rho} d\rho \]

which for uniform \(A \) is,

\[dR = \frac{\rho}{A} dl - \frac{\rho l}{A^2} dA + \frac{l}{A} d\rho \]

For typical conductors, the resistivity values in units of ohm mm\(^2\)/m are: Aluminum 0.0278, Pure Iron 0.1, Constantan 0.48, Copper 0.0172, Gold 0.0222, Tungsten 0.059, Manganese 0.423, Nickel 0.087.

Piezoresistivity (2)

The fractional change of \(R \) is of more interest, so we find,

\[\frac{dR}{R} = \frac{dl}{l} - \frac{dA}{A} + \frac{d\rho}{\rho} \]

\[\frac{dl}{l} = \text{fractional change in length} \]

\[\frac{dA}{A} = \text{fractional change in area} \]

\[\frac{d\rho}{\rho} = \text{fractional change in resistivity} \]
Piezoresistivity (3)

For a linearly elastic body,

$$\sigma_{xx} = F/A_o = E \cdot \varepsilon_x = E \cdot \frac{dl}{l}$$

where E is the Young’s modulus. Recall

$$\varepsilon_x = \frac{dl}{l}, \quad \varepsilon_y = -\nu \frac{dl}{l}, \quad \varepsilon_z = -\nu \frac{dl}{l}$$

And for an area $A = w t$, the fractional change is,

$$\frac{dA}{A} = \frac{dw}{w} + \frac{dt}{t} = -2\nu \varepsilon_x$$

Recall that n is Poisson’s ratio. Now the fractional change in R is,

$$\frac{dR}{R} = (1 + 2\nu) \varepsilon_x + \frac{d\rho}{\rho} \varepsilon_x$$

Input a strain → Geometric → Material → Output a resistance change

Strain Gage Sensitivity

The Gage Factor, G

A measure of the “sensitivity” of a strain gage is given by the gage factor, which is defined as,

$$G = \frac{\text{fractional change in resistance}}{\text{fractional change in strain}}$$

Using the result we just found, we have,

$$G = \frac{1}{\varepsilon} \frac{dR}{R} = (1 + 2\nu) + \frac{1}{\varepsilon} \frac{d\rho}{\rho} \varepsilon_x$$

Typical values:
- 80% Ni, 20% Cr, $G = 2$
- 45% Ni, 55% Cu, $G = 2$
- Platinum, $G = 4.8$
- 95% Pt, 5% Ir, $G = 5.1$
- Semiconductor, $G = 70$ to 135

“Piezoresistive effect”
More on Gage Types

- Strain gages come in many specialized forms and typically include a calibrated gage factor, G.
- Semiconductor strain gages have the highest values of G. These strain gages can have G values of 70 to 135, and they are typically very small. However, there are some disadvantages which include:
 - output is not linear with strain,
 - very temperature dependent,
 - usually have a much lower strain limit than metallic type,
 - more expensive than metallic type.

Strain Detection
Order of Magnitude Calculation

Consider a situation where the strain is on the order of 1 microstrain.

For a metallic foil strain gage with $G = 2$, $R = 120$ ohm,

$$\Delta R = G \cdot \epsilon \cdot R = 2 \cdot 1 \times 10^{-6} \cdot 120 = 0.0024 \Omega$$

You need to measure a 0.002% change in R!
How would you detect such a change?
Signal Conditioning for R-Sensors

- Direct ohmmeter measurement (circuit not in operation), voltage-divider, or ballast
- Wheatstone bridge
- Other Methods

\[\text{Signal} \]

\[\text{Wheatstone Bridge} \]

Signal Conditioning

- Provides a functional transformation needed for accurate and consistent measurement of electrical quantities that have very small changes.
- We will focus on the use of bridge circuits to perform a conversion from an impedance change into a voltage change.
Standard Bridge Configuration

Output DC voltage

\[V_o = \left(\frac{R_2 R_4 - R_1 R_3}{(R_1 + R_3)(R_2 + R_4)} \right) V_s \]

Null condition is satisfied when:

\[\frac{R_1}{R_2} = \frac{R_3}{R_4} \]

If all the gages have the same resistance, you can show:

\[\frac{dv_s}{V_s} = \frac{dR_1 - dR_2 - dR_3 + dR_4}{R} = \frac{G}{4} (\varepsilon_1 - \varepsilon_2 - \varepsilon_3 + \varepsilon_4) \]

This equation can be used to guide placement of gages on a specimen.

Strain Gage Conditioners

Bridge completion must usually be accompanied by additional conditioning circuitry such as filtering and amplification.

There are several suppliers of off-the-shelf conditioners:

- Omega
- Micro Measurements
- Analog Devices
The Basic Strain Gage Measurement Process

The strain gage is part of a multi-stage process that generates a voltage signal proportional to the strain.

\[\varepsilon \rightarrow G \cdot R \rightarrow \Delta R \rightarrow V_o \rightarrow V_{\text{amplified}} \]

- Sensing Mechanism
- Bridge
- Amplifier

5B38 Isolated, Wide-Bandwidth Strain Gage Input

Analog Devices 5B38