MINIMAL SUFFICIENT STATISTICS

If a statistic is sufficient, then so is an “augmented” statistic \(S'(S,T) \). Since the goal is to summarize information concisely, we desire to work with “minimal” sufficient statistics.

Def: A statistic \(S = T(X) \) is minimal sufficient if, for any other sufficient statistic, \(T'(X), T(X) \) is a function of \(T'(X) \).

Example: Suppose \(T(X) = \sum_{i=1}^{n} X_i \), \(T'(X) = \left(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2 \right) \)

Clearly, \(T(X) = g_1(T'(X)) \), \(T'(X) \neq g_2(T(X)) \)

We desire to use minimal sufficient statistics whenever possible as the greatest reduction of the data.

Example: Assume \(X_i, i = 1,\ldots,n \) are iid Bernoulli. Let \(S = T(X) = \sum_{i=1}^{n} X_i \). Now suppose that \(V = g(S) \). By definition, \(V \) is a summary of \(S \) only if for two different values of \(S, S = \eta_1, S = \eta_2 \), \(g(\eta_1) = g(\eta_2) = v \). Let’s check it.

\[
P(S = T(x)|V = v) = \frac{P(S = s \cap V = v)}{P(V = v)}
\]

\[
\begin{align*}
&= \binom{n}{s} \theta^s (1-\theta)^{n-s} \\
&= \binom{n}{\eta_1} \theta^{\eta_1} (1-\theta)^{n-\eta_1} + \binom{n}{\eta_2} \theta^{\eta_2} (1-\theta)^{n-\eta_2}
\end{align*}
\]

But this is still a function of \(\theta \), so \(V \) is NOT sufficient. \(S \) is sufficient. \(S \) is also minimal.
Can we formalize this? Sometimes factorization of the “likelihood function”,

\[L(\theta|x) = f(x|\theta) \]

gives us the minimal sufficient statistic directly. In other cases, we can exploit the relationship between ratios of likelihood functions and minimal sufficiency.

Theorem: Let \(f(x|\theta) \) be the pdf (pmf) of a sample \(X \). Suppose that a function \(T(X) \) exists such that for every two sample points (i.e. samples of observations) \(x, y \) the ratio \(\frac{f(x)}{f(y)} \) is a constant as a function of \(\theta \) iff \(T(X) = T(Y) \). Then \(T(X) \) is a minimal sufficient statistic.

Proof: See class handout.

Consider a statistic as dividing the sample space into classes called *equivalence classes*. Each class contains all observations \(X \) with the same value of \(S \). If \(S \) is minimal sufficient, then so is any \(S \) function of \(S \) (unique inverse). So minimal sufficiency is somehow related to the set of equivalence classes – but *not* to the particular labeling of the equivalence classes.

Consider the partition of the sample space:

\[
D(x) = \left\{ z; \frac{f(z|\theta)}{f(x|\theta)} = h(z,x) \forall \theta \in \Theta \right\}
\]

That is, where the ratios of likelihood functions are proportional.

If \(z \in D(x_1) \) and \(z \in D(x_2) \), then \(D(x_1) = D(x_2) \).

This gives insight into the requirements for minimal sufficiency.
By the Factorization Theorem:
\[f(x|\theta) = g(T(x)|\theta) h(x) = g(x|\theta) h(x) \]

Now suppose that for some other set of data \(z \),
\[f(z|\theta) = g(T(z)|\theta) h(z) \text{ (same family of pdfs)} \]

If \(T(x) = T(z) \), then
\[g(T(x)) = g(T(z)) \text{ (since the function } g \text{ is the same)} \]
\[f(x|\theta) = f(z|\theta) \frac{h(x)}{h(z)} \]
\[\Rightarrow \frac{f(x|\theta)}{f(z|\theta)} = m(x,z) \]

But this implies that \(x \) and \(z \) are in the same equivalence class. Therefore, the partition defined by the ratio of the likelihoods includes that based on the statistic \(T \), so this partition is minimal sufficient. (This result is essentially Theorem 6.2.13, which is proved differently).

Example: Suppose that \(X_i \) are iid Poisson \((\lambda)\). We know that \(S_1 = T(X) = \sum_{i=1}^{n} X_i \) and \(S_2 = T'(X) = X_{(1)} < \ldots < X_{(n)} \) are both sufficient for \(\lambda \).

Consider \(S_1 \),
\[
\frac{f(x|\lambda)}{f(y|\lambda)} = \frac{\exp(-n\lambda) \lambda^{\Sigma_{x_i}}/\prod x_i!}{\exp(-n\lambda) \lambda^{\Sigma_{y_j}}/\prod y_j!} = \frac{\lambda^{\Sigma_{x_i}-\Sigma_{y_j}}/\prod x_i!/\prod y_j!}{\prod x_i!/\prod y_j!} = h(x,y) i,j = 1,\ldots,n
\]
So, this is a minimal sufficient statistic.

Now consider S_2.

$$f(x|\lambda) = \frac{\exp(-n\lambda) \lambda^{\sum_{i=1}^r x_i} / \prod_{i,j} x_{ij} !}{\exp(-n\lambda) \lambda^{\sum_{j=1}^m y_{j}'} / \prod_{j,k} y_{jk} !}$$

S_1 is a function of S_2, so S_1 is a “coarser” statistic. Therefore, S_2 cannot be minimum sufficient.

Example: Assume that you are performing life testing. Suppose that of n components, r die after y_1, \ldots, y_r time periods and that $n-r$ are still alive after y_1', \ldots, y_m'. Assuming that the lives of Y_1, \ldots, Y_n are \sim iid

$$f(y|\lambda) = \lambda \exp(-\lambda y_1)$$

then the joint pdf is,

$$f(y|\lambda) = \prod_{j=1}^r \lambda \exp(-\lambda y_j) \prod_{k=1}^m \exp(-\lambda y_{j}')$$

(The second factor is the probability of times to death exceeding $y_{j}', k = 1, \ldots, m$)

Then

$$f(y|\lambda) = \lambda^r \exp(-\lambda y^*),$$

where $y^* = \sum_{j=1}^r y_j + \sum_{k=1}^m y_{j}'$. What is a sufficient statistic S?

$$S = (R, Y^*)$$ (note that R is the random variable of which r is a particular observation).

For this problem, you have a sufficient statistic that is of dimension 2, while the dimension of the parameter vector is 1. Is this a minimal sufficient statistic? Yes, check the ratio.

Can we say anything special if we are dealing with the exponential family of distributions:

$$f(x|\theta) = h(x) c(\theta) \exp \left(\sum_{i=1}^k w_i(\theta) t_i(x) \right)$$
Recall that $\sum_{j=1}^{n} t_{j}(x_{j})$ is sufficient. Now look at the ratio of joint pdfs! Thus, if $x_{j}\simiid$ and a member of the exponential family, these statistics are also minimal sufficient.

Example: Suppose that $X \sim N(\mu, \sigma^{2})$ and that neither is known.

$$f(x) \quad f(y) = \exp\left(-\frac{1}{2\sigma^{2}}\left(\sum_{i=1}^{n} x_{i}^{2} - \sum_{i=1}^{n} y_{i}^{2} - 2\mu \left(\sum_{i=1}^{n} x_{i} - \sum_{i=1}^{n} y_{i}\right)\right)\right)$$

Now if $\sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} y_{i}$, the ratio is independent of μ, σ. So,

$$\left(\sum_{i=1}^{n} x_{i}, \sum_{i=1}^{n} x_{i}^{2}\right)$$

is minimal sufficient for μ, σ.

Note Example 6.2.14 in C&B. The densities are expressed in terms of \bar{x}, s^{2}. Not surprisingly, the ratio of the likelihood functions is still independent of the parameters, so these are minimal sufficient statistics as well. *Neither sufficient nor minimal sufficient statistics is necessarily unique for a family.*

Example: Assume $X_{i} \sim \text{Gamma}(\alpha, \beta)$.

$$f(x|\alpha, \beta) = \frac{x^{\alpha-1} \exp(-x/\beta)}{\Gamma(\alpha) \beta^{\alpha}} = \exp\left\{\frac{-x}{\beta} + \alpha \ln\frac{1}{\beta} + (\alpha-1)\ln(x) - \ln(\Gamma(\alpha))\right\}$$

Assume that α is known:

$$w_{1}(\beta) = -\frac{1}{\beta}, \quad t(x) = x, \quad c(\beta) = \alpha \ln\frac{1}{\beta} - \ln(\Gamma(\alpha)), \quad h(x) = (\alpha-1)\ln x$$

Suppose that α were unknown……
Consider a generalization of the exponential family to $\theta = (\theta_i, i = 1, \ldots, q)$. The joint pdf is

$$f(x_j | \theta) = \exp\left\{ \sum_{m=1}^{k} a_m(\theta) b_{jm}(x_j) + c_j(\theta) + d_j(x_j) \right\}$$

$$f(x | \theta) = \exp\left\{ \sum_{m=1}^{k} a_m T_m(x) + c'(\theta) + d'(x) \right\}$$

$$T_m(x) = \sum_{j=1}^{n} b_{jm}(x_j)$$

For the general exponential family with multiple unknown parameters, the dimension of the parameter vector q and the index m of the sum over k terms are not necessarily the same. (Recall the life testing example.)

If $k < q$, some nonlinear relationship exists between the parameters

- $k = q$, standard case
- $k > q$, not common, but can happen

Example: Assume that $\gamma = \frac{\sigma}{\mu}$, fixed. $X \sim N\left(\mu, \gamma^2 \mu^2\right)$

$$f(x) = \frac{1}{\gamma \mu \sqrt{2\pi}} \exp\left\{ -\frac{(x-\mu)^2}{2\gamma^2 \mu^2} \right\}$$

$$= \exp\left\{ -\frac{x^2}{2\gamma^2 \mu^2} + \frac{x}{\gamma^2 \mu} - \frac{1}{2} \ln \left(2\pi \gamma^2 \mu^2\right) \right\}$$

Here, $k=2, q=1$, where a minimum sufficient statistic is $\left(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2\right)$

See also Example 6.2.15, a uniform distribution.