Review Problems

Group A

1. Find all solutions to the following linear system:

 \[x_1 + x_2 = 2 \]
 \[x_2 + x_3 = 3 \]
 \[x_1 + 2x_2 + x_3 = 5 \]

2. Find the inverse of the matrix \[
\begin{bmatrix}
0 & 3 \\
2 & 1
\end{bmatrix}
\]

3. Each year, 20% of all untenured State University faculty become tenured, 5% quit, and 75% remain untenured. Each year, 90% of all tenured S.U. faculty remain tenured and 10% quit. Let \(U_t \) be the number of untenured S.U. faculty at the beginning of year \(t \), and \(T_t \) the tenured number.

Use matrix multiplication to relate the vector \[
\begin{bmatrix}
U_{t+1} \\
T_{t+1}
\end{bmatrix}
\]
to the vector \[
\begin{bmatrix}
U_t \\
T_t
\end{bmatrix}
\].

4. Use the Gauss-Jordan method to determine all solutions to the following linear system:

 \[2x_1 + 3x_2 = 3 \]
 \[x_1 + x_2 = 1 \]
 \[x_1 + 2x_2 = 2 \]

5. Find the inverse of the matrix \[
\begin{bmatrix}
0 & 2 \\
1 & 3
\end{bmatrix}
\].

6. The grades of two students during their last semester at S.U. are shown in Table 2.

Courses 1 and 2 are four-credit courses, and courses 3 and 4 are three-credit courses. Let GPA\(_i\) be the semester grade point average for student \(i \). Use matrix multiplication to express the vector \[
\begin{bmatrix}
\text{GPA}_1 \\
\text{GPA}_2
\end{bmatrix}
\]
in terms of the information given in the problem.

7. Use the Gauss-Jordan method to find all solutions to the following linear system:

 \[2x_1 + x_2 = 3 \]
 \[3x_1 + x_2 = 4 \]
 \[x_1 - x_2 = 0 \]

8. Find the inverse of the matrix \[
\begin{bmatrix}
2 & 3 \\
3 & 5
\end{bmatrix}
\].

9. Let \(C_t \) = number of children in Indiana at the beginning of year \(t \), and \(A_t \) = number of adults in Indiana at the beginning of year \(t \). During any given year, 5% of all children become adults, and 1% of all children die. Also, during any given year, 3% of all adults die. Use matrix multiplication to express the vector \[
\begin{bmatrix}
C_{t+1} \\
A_{t+1}
\end{bmatrix}
\]
in terms of \[
\begin{bmatrix}
C_t \\
A_t
\end{bmatrix}
\].

10. Use the Gauss-Jordan method to find all solutions to the following linear equation system:

 \[x_1 - x_3 = 4 \]
 \[x_2 + x_3 = 2 \]
 \[x_1 + x_2 = 5 \]
11 Use the Gauss-Jordan method to find the inverse of the matrix
\[
\begin{bmatrix}
1 & 0 & 2 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{bmatrix}
\]

12 During any given year, 10% of all rural residents move to the city, and 20% of all city residents move to a rural area (all other people stay put!). Let \(R_t \) be the number of rural residents at the beginning of year \(t \), and \(C_t \) be the number of city residents at the beginning of year \(t \). Use matrix multiplication to relate the vector \(\begin{bmatrix} R_{t+1} \\ C_{t+1} \end{bmatrix} \) to the vector \(\begin{bmatrix} R_t \\ C_t \end{bmatrix} \).

13 Determine whether the set \(V = \{ [1 2 1], [2 0 0] \} \) is a linearly independent set of vectors.

14 Determine whether the set \(V = \{ [1 0 0], [0 1 0], [-1 -1 0] \} \) is a linearly independent set of vectors.

15 Let \(A = \begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & d \end{bmatrix} \).

a. For what values of \(a, b, c, \) and \(d \) will \(A^{-1} \) exist?

b. If \(A^{-1} \) exists, find it.

16 Show that the following linear system has an infinite number of solutions:
\[
\begin{bmatrix}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix} =
\begin{bmatrix}
2 \\
3 \\
4 \\
1
\end{bmatrix}
\]

17 Before paying employee bonuses and state and federal taxes, a company earns profits of $60,000. The company pays employees a bonus equal to 5% of after-tax profits. State tax is 5% of profits (after bonuses are paid). Finally, federal tax is 40% of profits (after bonuses and state tax are paid). Determine a linear equation system to find the amounts paid in bonuses, state tax, and federal tax.

18 Find the determinant of the matrix \(A = \begin{bmatrix} 2 & 4 & 6 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \).

19 Show that any \(2 \times 2 \) matrix \(A \) that does not have an inverse will have \(\det A = 0 \).

Group B

20 Let \(A \) be an \(m \times m \) matrix.

a. Show that if rank \(A = m \), then \(Ax = 0 \) has a unique solution. What is the unique solution?

b. Show that if rank \(A < m \), then \(Ax = 0 \) has an infinite number of solutions.

21 In our study of Markov chains (see Chapter 19), we will encounter the following linear system:
\[
[x_1 \ x_2 \ \cdots \ x_n] = [x_1 \ x_2 \ \cdots \ x_n]P
\]

where
\[
P = \begin{bmatrix}
p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn}
\end{bmatrix}
\]

If the sum of each row of the \(P \) matrix equals 1, use Problem 20 to show that this linear system has an infinite number of solutions.

22 The national economy of Seriland manufactures three products: steel, cars, and machines. (1) To produce $1 of steel requires 30¢ of steel, 15¢ of cars, and 40¢ of machines. (2) To produce $1 of cars requires 45¢ of steel, 20¢ of cars, and 10¢ of machines. (3) To produce $1 of machines requires 40¢ of steel, 10¢ of cars, and 45¢ of machines. During the coming year, Seriland wants to consume \(d_c \) dollars of steel, \(d_c \) dollars of cars, and \(d_m \) dollars of machinery.

For the coming year, let
\[
s = \text{dollar value of steel produced} \\
c = \text{dollar value of cars produced} \\
m = \text{dollar value of machines produced}
\]

Define \(A \) to be the \(3 \times 3 \) matrix whose \(ij \)th element is the dollar value of product \(i \) required to produce $1 of product \(j \) (steel = product 1, cars = product 2, machinery = product 3).

a. Determine \(A \).

b. Show that
\[
\begin{bmatrix}
s \\ c \\ m
\end{bmatrix} = \begin{bmatrix}
2 & 4 & 6 \\ 1 & 0 & 0 \\ 0 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
d_s \\ d_c \\ d_m
\end{bmatrix}
\]

(Hint: Observe that the value of next year's steel production = (next year's consumer steel demand) + (steel needed to make next year's steel) + (steel needed to make next year's cars) + (steel needed to make next year's machines). This should give you the general idea.)

c. Show that Equation (24) may be rewritten as
\[
(I - A) \begin{bmatrix}
s \\ c \\ m
\end{bmatrix} = \begin{bmatrix}
d_s \\ d_c \\ d_m
\end{bmatrix}
\]

d. Given values for \(d_s, d_c, \) and \(d_m \), describe how you can use \((I - A)^{-1} \) to determine if Seriland can meet next year's consumer demand.

e. Suppose next year's demand for steel increases by $1. This will increase the value of the steel, cars, and machines that must be produced next year. In terms of \((I - A)^{-1} \), determine the change in next year's production requirements.

\[\text{Based on Leontief (1966). See references at end of chapter.}\]