COMPLEX VARIABLES PROBLEMS

1) Using Euler’s identity, express \(\exp\{(-8 + 9j) t\} \) in terms of sinusoids.

2) Given the polynomial function \(F(z) = z^3 + 4z^2 - 7z + 3 \) in the complex variable \(z = x + jy \). Determine \(\text{Re}(F) \), \(\text{Im}(F) \), \(|F| \), and \(\arg F \).

3) Given the differential equation \(\ddot{q} + 4 \dot{q} + 2q = 2e^{2j \omega} \) excited by the complex exponential \(2e^{2j \omega} \).
 a) Determine the particular solution. \(\text{Hint:} \) try \(Be^{2j \omega} \).
 b) Sort out the real and imaginary parts of the particular solution.
 c) Show that the real part of the solution is the solution of the differential equation excited by \(2 \cos 2t \).

4) Given the function
 \[G(s) = \frac{0.01s + 1}{s^2 + 0.2s + 100} \]
 With \(s = j \omega \), express the numerator and denominator as complex numbers in polar form.
 Then find \(|G| \) and \(\arg G \).

5) For \(G(s) \) given in problem 4, with \(s = j \omega \),
 a) Express the numerator and denominator as Cartesian complex numbers.
 b) Multiply the numerator and denominator by the complex conjugate of the denominator.
 c) Show that \(|G| \) and \(\arg G \) of the resulting complex number is identical to those of problem 4.