I. Physical systems to bond graph
 Mechanical translational & rotational
 free body diagrams
 series elements: 0
 parallel elements: 1
 electrical
 series elements: 1
 parallel elements: 0
 fluidic
II. Power \(P = ef \)
III. Energy \(E = \int P \, dt = \int ef \, dt \)
IV. Bond graph
 elements
 resistance: \(R \)
 energy storage: \(C \) and \(I \)
 links between domains:
 \(GY \): effort to flow, flow to effort
 \(TF \): effort to effort, flow to flow
 sources:
 effort: \(S_e \)
 flow: \(S_f \)
 junctions
 0: common effort, balance of flows
 1: common flow, balance of efforts
 power flows: arrows indicate positive direction
 causality
 assignment via rules of cookbook approach
 integral (desired for energy storage elements)
 independent energy storage (IESE)
 \# IESE determines system order
 derivative (may be forced on some ESE)
 dependent or linked devices
 state equations
 \# St Eqns = \# IESE
 extract from bond graph
 start with IESE
 usually revolves around junctions
 0 => sum flows and/or common effort
 1 => sum efforts and/or common flow
 input bond contribution ALWAYS on LHS
 causal stroke /arrow touching
 only applies to balances
 agree w/input bond => + sign
 disagree w/input bond => - sign
V. System response

Definition of solution: function that renders the differential equation(s) an identity devoid of derivatives.
Also satisfies initial conditions.

Linear system $\dot{x} = Ax + u$

Homogeneous

Postulate $x_{\text{homogeneous}} = a e^{lt}$
Substitute into eqn, get $[l - A]a = 0$
Solve characteristic equation $\det[l - A] = 0$
Get eigenvalues λ_i
Back substitute λ_i
$[\lambda_i - A]a_i = 0$
Solve eigenvectors $a_i = [a_{ii}]$

Particular $u(t) = U_0 u_s(t)$
Step, $u_s(t)$
Complete $x_{\text{complete}} = x_{\text{particular}} +$

$\sum_{i=1}^{n} x_{\text{homogeneous}}$

Initial conditions

Apply to complete solution x_{complete}
Determine arbitrary constants

1st order system $\dot{x} + x = h(t)$
General approach (integrate equations)
Time constant τ

2nd order system $\ddot{x} + 2 \zeta \omega_n \dot{x} + \omega_n^2 x = f(t)$
Natural frequency ω_n
Damping ratio ζ
Damped natural frequency $\omega_d = \omega_n \sqrt{1 - \zeta^2}$

Only if $0 \leq \zeta < 1$

Higher order systems

VI. Stability

Eigenvalues

If even one $\text{Re}(\lambda_i) > 0$, e^{lt} becomes large \Rightarrow Unstable
All $\text{Re}(\lambda_i) < 0$, stable
For this exam, know:

1. how to construct a bond graph, given a physical system
2. how to extract state equations from a bond graph
3. how to solve ordinary differential equations
4. the parameters of a 1^{st} order system
5. the parameters of a 2^{nd} order system