Eq. 1.8 is used in both parts: \(n = \frac{m}{M} \), where \(M \) is from Tables A-1.

(a) \(m = M \, n \), where \(n = 20 \text{ kmol} \).

\[
\begin{align*}
\text{Air:} & \quad m = (28.97 \text{ kg/kmol})(20 \text{ kmol}) = 579.4 \text{ kg} \\
\text{C:} & \quad m = (12.01 \text{ kg/kmol})(20 \text{ kmol}) = 240.2 \text{ kg} \\
\text{H}_2\text{O:} & \quad m = (18.02 \text{ kg/kmol})(20 \text{ kmol}) = 360.4 \text{ kg} \\
\text{CO}_2: & \quad m = (44.01 \text{ kg/kmol})(20 \text{ kmol}) = 880.2 \text{ kg}
\end{align*}
\]

(b) \(n = \frac{m}{M} \), where \(m = 50 \text{ lb} \).

\[
\begin{align*}
\text{H}_2: & \quad n = \frac{50 \text{ lb}}{2.016 \text{ lb/lbmol}} = 24.802 \text{ lbmol} \\
\text{N}_2: & \quad n = \frac{50 \text{ lb}}{28.01 \text{ lb/lbmol}} = 1.785 \text{ lbmol} \\
\text{NH}_3: & \quad n = \frac{50 \text{ lb}}{17.03 \text{ lb/lbmol}} = 2.934 \text{ lbmol} \\
\text{C}_3\text{H}_8: & \quad n = \frac{50 \text{ lb}}{44.09 \text{ lb/lbmol}} = 1.134 \text{ lbmol}
\end{align*}
\]
The actual forces developed when birds and aircraft collide are difficult to determine precisely, but estimates can be calculated using average values of acceleration and force magnitudes, as follows:

The goose is accelerated from a very low velocity to 150 miles/h in 10^-5 s. Thus the average acceleration magnitude is

\[|a| = \left(\frac{150 \text{ miles/h} - 0}{10^{-5}} \right) \frac{1 \text{h}}{3600 \text{s}} \frac{5280 \text{ft}}{1 \text{mile}} = 2.2 \times 10^5 \text{ ft/s}^2 \]

The magnitude of the average force applied is

\[|F| = m |a| = \left(\frac{12 \text{ lb}}{32.2 \text{ lb-ft/s}^2} \right) \frac{1 \text{ lb-ft}}{2.2 \text{ lb-ft/s}^2} = 82,000 \text{ lb} \quad \text{(rounded)} \]
1.23 The specific volume of 5 kg of water vapor at 1.5 MPa, 440°C is 0.2160 m³/kg. Determine (a) the volume, in m³, occupied by the water vapor, (b) the amount of water vapor present, in gram moles, and (c) the number of molecules.

KNOWN: Mass, pressure, temperature, and specific volume of water vapor.

FIND: Determine (a) the volume, in m³, occupied by the water vapor, (b) the amount of water vapor present, in gram moles, and (c) the number of molecules.

SCHEMATIC AND GIVEN DATA:

\[m = 5 \text{ kg} \]
\[p = 1.5 \text{ MPa} \]
\[T = 440^\circ C \]
\[v = 0.2160 \text{ m}^3/\text{kg} \]

ENGINEERING MODEL:

1. The water vapor is a closed system.

ANALYSIS:

(a) The specific volume is volume per unit mass. Thus, the volume occupied by the water vapor can be determined by multiplying its mass by its specific volume.

\[V = mv = (5 \text{ kg}) \left(0.2160 \frac{\text{m}^3}{\text{kg}}\right) = 1.08 \text{ m}^3 \]

(b) Using molecular weight of water from Table A-1 and applying the appropriate relation to convert the water vapor mass to gram moles gives

\[n = \frac{m}{M} = \left(\frac{5 \text{ kg}}{18.02 \frac{\text{kg}}{\text{kmol}}}\right) \left(\frac{1000 \text{ moles}}{1 \text{ kmol}}\right) = 277.5 \text{ moles} \]

(c) Using Avogadro’s number to determine the number of molecules yields

\[\# \text{Molecules} = \text{Avogadro's Number} \times \# \text{moles} = \left(6.022 \times 10^{23} \frac{\text{molecules}}{\text{mole}}\right)(277.5 \text{ moles}) \]

\[\# \text{Molecules} = 1.671 \times 10^{26} \text{ molecules} \]
PROBLEM 1.29

\[P_2 = 200 \text{ lbf/in.}^2 \]
\[V_2 = 2.0 \text{ ft}^3 \]

\[P_1 = 40 \text{ lbf/in.}^2 \]
\[V_1 = 3.5 \text{ ft}^3 \]

The pressure-volume relation is linear during the process. Therefore,

\[\frac{P - P_1}{V - V_1} = \frac{P_2 - P_1}{V_2 - V_1} \quad \text{and} \quad V = \frac{P - P_1}{P_2 - P_1} (V_2 - V_1) + V_1 \]

Using given data where \(P = 150 \text{ lbf/in.}^2 \)

\[V = \frac{(150 - 200) \text{ lb} \text{f in.}^2}{(40 - 200) \text{ lb f in.}^2} (3.5 - 2.0) \text{ft}^3 + 2.0 \text{ ft}^3 = \frac{-50}{-160} (1.5) \text{ft}^3 + 2.0 \text{ ft}^3 = 2.5 \text{ ft}^3 \]
1.37 Figure P1.37 shows a tank within a tank, each containing air. Pressure gage A, which indicates pressure inside tank A, is located inside tank B and reads 5 psig (vacuum). The U-tube manometer connected to tank B contains water with a column length of 10 in. Using data on the diagram, determine the absolute pressure of the air inside tank B and inside tank A, both in psia. The atmospheric pressure surrounding tank B is 14.7 psia. The acceleration of gravity is \(g = 32.2 \text{ ft/s}^2 \).

KNOWN: A tank within a tank, each containing air.

FIND: Absolute pressure of air in tank B and in tank A, both in psia.

SCHEMATIC AND GIVEN DATA:

ENGINEERING MODEL:
1. The gas is a closed system.
2. Atmospheric pressure is exerted at the open end of the manometer.
3. The manometer fluid is water with a density of 62.4 lb/ft\(^3\).

ANALYSIS:
(a) Applying Eq. 1.11

\[
 p_{gas,B} = p_{atm} + \rho g L
\]

where \(p_{atm} \) is the local atmospheric pressure to tank B, \(\rho \) is the density of the manometer fluid (water), \(g \) is the acceleration due to gravity, and \(L \) is the column length of the manometer fluid. Substituting values

\[
 p_{gas,B} = 14.7 \frac{\text{lbf}}{\text{in.}^2} + \left(62.4 \frac{\text{lb}}{\text{ft}^3} \right) \left(32.2 \frac{\text{ft}}{\text{s}^2} \right) (10 \text{ in.}) = 15.1 \frac{\text{lbf}}{\text{in.}^2}
\]
Since the gage pressure of the air in tank A is a vacuum, Eq. 1.15 applies.

\[p(\text{vacuum}) = p_{\text{atm}}(\text{absolute}) - p(\text{absolute}) \]

The pressure of the gas in tank B is the local atmospheric pressure to tank A. Solving for \(p(\text{absolute}) \) and substituting values yield

\[p(\text{absolute}) = p_{\text{atm}}(\text{absolute}) - p(\text{vacuum}) = 15.1 \text{ psia} - 5 \text{ psig} = \textbf{10.1 psia} \]