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Introduction 
Extreme weather events often cause economic damages and sometimes result in the loss of 
life. The US Department of Energy estimates that power outages and interruptions in the US 
cost Americans about $150 billion per year [1]. The winter storm that hit Texas in February 
2021 alone resulted in hundreds of deaths and tens of billions of dollars of economic damages 
that will likely require decades to pay off [2]. During that winter storm, a record high demand 
for electricity coupled with a record high level of power system and supporting infrastructure 
failures left the Electric Reliability Council of Texas (ERCOT), the grid operator for most of Texas, 
with no choice but to institute unscheduled and involuntary firm load shed (blackouts) in a last-
ditch effort to avoid a complete collapse of the grid that might have required weeks or months 
for full recovery. Much attention has been paid to the supply side of the problem, with a focus 
on freezing power plants and natural gas facilities that failed before and during the storm.  
 
However, the demand side of electricity is just as critical as supply. Though the American 
Council for an Energy-Efficient Economy (ACEEE) estimated that an aggressive deployment of 
multiple energy efficiency and demand response programs could reduce summer and winter 
peaks by thousands of megawatts [3], in general, the demand side has received much less 
attention than the supply side. This report seeks to fill that knowledge gap by analyzing the role 
of energy efficiency and demand response as prospective tools to improve resilience of the 
energy system in Texas during future extreme weather events.  
 
Space Conditioning 
Space conditioning makes up a large portion of household energy use in the US [4] and is 
sensitive to ambient temperature. As a result, weather-driven space conditioning in the Texas 
residential sector drives seasonal peak power demand and is an important factor to understand 
in the context of grid resilience. Furthermore, because space conditioning is so energy-
consumptive, it is worth considering for the implementation of efficiency or demand response 
programs. 
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Figure 1: Figure from ERCOT showing how the residential sector in its service area changes relative to the commercial and 

industrial sectors during peak demand events in the winter and summer. [5] Note that the winter figure (left) and the summer 
figure (right) have a different vertical axis that is not shown. In both cases residential consumption is approximately half of peak 

power demand, with much of that variability coming from space conditioning. 

 
For 2017, about half of the peak electrical demand in winter and summer were weather-
sensitive (Figure 1). That year, 44% of the winter peak (e.g. 29 GW out of 66 GW) and 53% of 
summer peak (37 GW out of 71 GW) were caused by heating and cooling in response to the 
weather, with about 70% of that response coming from the residential sector alone. In addition, 
the winter sees non-electric demand increases for space or water heating, primarily from 
natural gas, but also from propane, oil, and wood heating systems.  
 
To understand how peak electric demand might evolve in the future given changing weather 
patterns and installation of electric heating systems, it is important to understand how the grid 
has evolved in the past. To this end, we have developed two analyses that demonstrate 1) how 
the grid’s response to temperature changes has itself changed and 2) how the winter peak 
demands are growing relative to the summer peaks. Understanding these trends helps establish 
the foundation for what will happen with increasing electrification of space heating, improved 
efficiencies of air conditioning systems, and together their potential for efficiency and demand 
response. 
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Changing sensitivity to cold weather in Texas power demand [6] 
This analysis estimated the effect of heightened temperature sensitivity on electricity demand 
in Texas during the February 2021 blackout event. Using 20 years of hourly data, we estimated 
the relationship between temperature and electricity demand. We found that demand has 
become more responsive to cold temperatures over time, which means that cold snaps today 
and in the future will strain the grid more per cooling degree day (CDD) than cold snaps of 
decades past. This conclusion is consistent with the fact that electric heating has increased in 
commensurate fashion over the past 20 years in Texas. We also found that during the February 
2021 event, average electricity demand was 8% higher, and approximately 10,000 MW higher 
during the peak hour, than it would have been had temperature sensitivity remained steady at 
early 2000s levels, see Figure 2. These results highlight that Texas’s increased sensitivity to cold 
weather extremes is not limited to the supply side, but the demand side as well. These findings 
have implications to other regions that are seeking to reduce carbon emissions through the 
electrification of heating. 
 
This analysis has been published in the journal iScience [6]. 
 

 
 
Figure 2: Load forecast and counterfactual load assessments for February 14-20, 2021 using 2002–2006 temperature sensitivity 
reveal that if ERCOT had had the same temperature sensitively in 2021 that it had on average from 2002-2006, then peak 
demand during the storm would have been lower by as much as 10,000 MW, even when adjusted for population increases. 

 
Observations of winter and summer load growth in ERCOT and its implications for future 
resource planning 
In addition to the role of temperature sensitivity, the evolution in summer and winter peak 
demands in the Electric Reliability Council of Texas (ERCOT) service area from 1997 to 2021 was 
quantified using a linear regression analysis. Weather data for the days in which peak demand 
occurred were also compiled to quantify the relationship between peak heating and cooling 
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loads and ambient temperature. We found that the summer peak demand growth has been 
generally stable and approximately linear with time. Conversely, the winter peak demand 
growth has been less consistent, varying much more around the broader trend. This variability 
is likely a consequence of high residential electrical heating load on winter peak demand days, 
which themselves saw temperatures that varied widely from the mean value. In light of the 
high penetration of electrical heating equipment in Texas relative to other regions, these events 
may foreshadow future resilience challenges that other regions will face as heating equipment 
is electrified. Thus, resource planners in ERCOT should place less certainty on winter peak 
demand projections and an increased level of winter preparedness on both the supply and 
demand sectors appears warranted for resource planners in all regions. 
 

 
Figure 3: Figure showing the growth of winter and summer peak demand in ERCOT from 1997 to 2021. The bars are actual peak 
demand (or estimated peak demands if load shed happened) and the dotted lines are the linear fit estimations of peak demand 

for each season and each year. The winter peak demand is growing on an annual basis more quickly than the summer peak 
demand. The data for 2011 and 2021 show the estimate for what winter peak electric demand would have been had the grid not 

endured a sustained outage. Notably, 2021 was the first time that winter peak demand would have exceeded summer peak. 

 
This linear regression shows that if trends continue the winter peak is likely to exceed summer 
peak regularly by the turn of the century. However, in 2021 the winter peak demand would 
have exceeded summer peak demand had the grid not failed during the winter storm. 
 
This analysis has been submitted to a peer-reviewed academic journal for publication. 
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Additional analysis is looking at those same trends to determine how electrification might 
accelerate the increases in winter peak demand, and potentially slow the increase in summer 
peak demand (because electrified heating is usually implemented via heat pumps, which 
include summer performance efficiency). This technology change could accelerate the 
crossover point, meaning the year when winter peak demand regularly exceeds summer peak 
could occur sooner in the future than existing trends imply [7]. 
 
Water Heating 
Just as with the expansion of electrified space heating, the same trend might occur for water 
heating. Water heating is already a cause of significant electric demand in Texas as 46% of 
water heaters in the state are electrically operated [8]. In all, about 14.7 million MWh of 
electricity is consumed annually in Texas for water heating, which corresponds to an average 
power draw of 1,680 MW [9].  That is more than the total output of a large nuclear reactor 
running at full capacity year-round. At a typical retail cost of $110 to $150 per MWh of 
electricity, Texans spend approximately $1.6 to $2.2 billion on electricity for water heating 
annually. Texans invest another approximately $745 million1 for natural gas and propane for 
water heating, too [10]. Thus, efficiency programs for water heating represent an opportunity 
for cost savings for Texas households. Though the average power draw for water heating is 
instructive, the demand for water heating would presumably be higher in cold weather than 
warm weather (depending on operational patterns in the residential sector), so the 
contribution of water heating during winter peak times might be much higher.  
 

 
1 Population weighted ratio of natural gas and propane water heating expenditures for the West South-Central 
Region of the US. 
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Figure 4: Texas consumes about 50 trillion BTUs (just under 15 million MWh) of electricity per year for water heating [9].  

As more electric water heaters are installed, their use will simultaneously increase peak 
demand while also opening an opportunity for increased levels of demand response. 
 
Electric water heaters have been successfully used for demand response programs in other 
countries that are roughly the same size as Texas. In France, there are more than 13 million 
smart electric water heater units installed. That fleet of water heaters has a nightly winter peak 
demand of about 8 GW, roughly the equivalent of the output from seven modern nuclear 
power plants. Because all the water heaters are part of the grid’s demand response program, 
intelligently cycling them off when they are not needed enables about 3 GW of demand 
response for the system [11]. If a similar water heating program in Texas were to be 
implemented and similar ratios of demand response could be reached, then it is reasonable to 
expect that 500 to 1000 MW of load from water heaters could be cycled off at any given time.   
 
Preliminary Estimates for Demand Response Potential in Texas 
While there is no state-wide comprehensive demand response program or plan, there are some 
existing demand response programs managed by Retail Electric Providers (REPs) and of other 
Non-opt In Entities (NOIEs) such as electric co-ops and municipally owned utilities. In 2021, 
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ERCOT estimated that almost 44,000 individual customers and NOIEs2 participated in some 
form of demand response program, yielding over 2,500 MW in demand reduction potential 
during the summer months [12]. However, it was also noted in the report that most demand 
response programs are designed for the summer months and are focused on 4CP (Four 
Coincident Peak) events and thus were not available for deployment during Winter Storm Uri. 
 
One of the NOIE areas, Austin Energy (the municipal utility for Austin, Texas) has had a demand 
response program called “Power Partners” since 2013 [13]. For this program, customers are 
given a credit or rebate and a smart thermostat, which allows the utility to cycle off air 
conditioners in the summer on a rotating basis to reduce peak demand. As of 2021, that 
program included about 43,000 controllable thermostats (32,000 smart thermostats and 11,000 
thermostats controlled by one-way radio) that could reduce peak demand by about 30 MW for 
a cost of about $208/kW, which is much cheaper than building new power plant capacity at 
$1000/kW or more [14]. In the winter storm event of 2021, that same program was used to 
cycle off electric heat pumps to reduce peak demand.  
 
In total, the residential sector is currently responsible for roughly half (33-35 GW) of both 
summer and winter peak demand periods (see Figure 1). Previous work looking at how 
individual appliances consume power during summer peak demand times indicates that about 
two-thirds of this residential use is for on-peak space conditioning [15].  
 
The data indicate that there are about 21 GW of residential air-conditioning potentially 
available for demand response across the ERCOT grid during the summer peak season. If about 
one-third of that load were able to be shifted during peak demand times, then about 7 GW of 
feasible demand response potential that exists today, just for space conditioning. A demand 
response program at that scale could potentially obviate the need to build 7 GW of new peak 
capacity, avoiding billions of dollars of capital investments for power plant construction3 and 
thereby representing substantial possible cost savings for consumers. Further, as the trend of 
the electrification of space heating continues, the winter demand potential is likely to grow. In 
addition, the 500 MW to 1 GW of demand response potential from electric water heating in 
Texas could also be included alongside smart thermostats. In both cases, the potential for 
demand response is growing with increasing installations of electric home heat pumps and 
water heaters across the state.  
 
For these systems to tap their full potential, they will need smart controls to be installed at the 
appliance or meter level, customer buy-in, engagement by transmission and distribution 
companies, and rate schemes that reward participation (such as time-of-use or critical peak 
pricing or front end rebates). 

 
2 Because ERCOT does not have direct access to individual customer information in the NOIE areas, the 44,000 is 
an underestimate of the actual number of customers that participated (likely by many tens of thousands) because 
customer demand response in the NOIE areas was aggregated and counted as a single entity in that report’s 
process.  
3 At $1000 (wind, solar, etc.) to $4500 (nuclear) per kW of generating capacity for power plant construction, 
avoided capital investments would be on the order of $5 to $30 billion or more statewide. 
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Methodology 
 
Weather dataset development 
This section describes the methodology behind the evaluation of past weather events and the 
estimation of future weather conditions, which will drive energy use in future decades. 
 
Past weather events 
To evaluate historical weather impacts on the ERCOT grid, we compiled data for previous 
outages using Department of Energy form OE-417 [16]. The outages were connected to ERCOT 
emergency alerts and related weather reports to determine the type of weather event, 
including extreme cold (snow or freezes), extreme heat (high temperatures or heat wave) and 
drought, or high winds and precipitation. High winds and precipitation include windstorms, 
severe thunderstorms, tropical storms, tornadoes, and hurricanes. 
 
Estimated future weather conditions 
Future weather conditions were estimated using a series of curated climate indicators used to 
describe future conditions of temperature, heat, and precipitation in each of the eight weather 
zones in ERCOT, shown in Figure 5.  
 

 
Figure 5: Map showing ERCOT’s eight weather zones. 

 
These climate indicators were produced using future climate projections and historical 
observations. The projections are statistically downscaled from global climate models. 
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Climate data used in modeling future energy use, including Near-Surface Relative Humidity, (%), 
Precipitation (mean of the daily precipitation rate, kg/m2s), Daily-Mean Near-Surface Wind 
Speed (m/s), Daily Maximum Near-Surface Air Temperature (Kelvin), Daily Minimum Near-
Surface Air Temperature (Kelvin), and Daily Mean Near-Surface Air Temperature (Kelvin), were 
processed from downscaled global climate models acquired from NASA Center for Climate 
Simulation (NCCS). These future climate markers are summarized in Table 1. 

 
Table 1: Climate indicator inputs for modeling future energy use. 

Weather Marker Native Model Output Units 
Near-Surface Relative Humidity percentage 
Precipitation (mean of the daily precipitation rate) kg/m2s 
Daily-Mean Near-Surface Wind Speed Meters per second (m/s) 
Daily Maximum Near-Surface Air Temperature Kelvin 
Daily Minimum Near-Surface Air Temperature Kelvin 
Daily Near-Surface Air Temperature Kelvin 

 
NCCS describes the NEX-GDDP-CMIP6 dataset [17] as “comprised of global downscaled climate 
scenarios derived from the General Circulation Model (GCM) runs conducted under the 
Coupled Model Intercomparison Project Phase 6 (CMIP6) and across two of the four “Tier 1” 
greenhouse gas emissions scenarios known as Shared Socioeconomic Pathways (SSPs).” The 
CMIP6 GCM runs were generated for the Intergovernmental Panel on Climate Change’s Sixth 
Assessment Report (IPCC AR6). The NEX-GDDP-CMIP6 dataset aims to deliver a “set of global, 
high resolution, bias-corrected climate change projections” in finer detail, such as at the local 
scale. The GCM model for this analysis is GFDL-ESM4 with SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-
8.5 climate scenarios. In general, the modeled weather future temperatures increase as the 
Shared Socioeconomic Pathways number increases based on the amount of radiative forcing 
(heating) that the earth’s climate is subjected to. Figure 6, taken from [18], shows the relative 
temperature anomaly given by each pathway. Note that while this analysis only considered 
future projections out to 2050, 2100 projections are provided for further reference. 
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Figure 6: Global warming following SSPs with the historical temperature record from HadCRUT541 overlaid in black. Global 
temperature anomalies are taken relative to the 1850–1900 average. Figure and caption (side a) taken from [18]. 

The model used a daily original temporal resolution beginning January 1, 1950 and ending 
December 31, 2100. These data were then down sampled to between January 1, 2025 and 
December 31, 2050 for this analysis. The model used geographical resolution grid of 0.25 
degrees x 0.25 degrees, processed to Texas weather zones in the ERCOT area. The future 
weather data projections specifications are summarized in Table 2.  
 

Table 2: Specifications of downscaled climate model and processing used to generate climate indicators. 

Category Model Specification 
GCM Model GFDL-ESM4 
Original Temporal resolution Daily from 1950-01-01 to 2100-12-31 
Temporal resolution of the processed data Daily from 2025-01-01 to 2050-12-31 
Original Spatial resolution 0.25 degrees x 0.25 degrees 
Spatial resolution of the processed data Texas weather zones in ERCOT 
Climate scenarios SSP2-4.5, SSP5-8.5, SSP1-2.6 and SSP3-7.0 

 
These future weather data scenarios were then converted to hourly data that was used as 
inputs to the ResStock [19] building energy simulation model, which is further explained below. 
 
Conversion of future daily weather data into hourly data 
The future weather datasets described above included daily values of minimum and maximum 
temperatures, average wind speeds, average relative humidity, and average precipitation 
levels. However, the ResStock model, and subsequent SWITCH grid model, which is explained 
further below, analyses both required hourly inputs. Thus, we developed a methodology to 
convert the daily weather data to hourly weather data by scaling weather days (24-hour 
profiles) from actual 2018 weather data to approximate what the future hourly data might look 
like. 
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First, each day from the 2018 weather data was converted into a similar daily representation as 
that of the future climate data in Table 1. Next, the future weather data days were matched to 
the closest actual 2018 weather day, based on daily minimum and maximum temperatures, and 
the full hourly data for that 2018 weather day was used as the hourly data for the future 
climate day. For future days that were more than a 5% difference to the closest base weather 
day (2018 data), the closest day was used but the temperatures were augmented to the future 
daily minimum and maximum and the other hours of the day were estimated via a sinusoidal 
function between the two. This process was performed for all weather years and climate 
scenarios used in this analysis, resulting in hourly representations of the future climate data. 
 
Updated demand curves 
This section describes the methodology for developing updated demand curves from future 
weather scenarios for the residential and commercial sectors, energy efficiency retrofits, 
demand response, and district heating and cooling systems. 
 
Residential demand  
To develop future residential building energy curves, based on future weather and energy 
mitigation techniques, such as energy efficiency and demand response, we utilized the 
ResStock Analysis Tool, which was developed by the National Renewable Energy Lab (NREL) 
[19]. The ResStock tool can simulate energy efficiency improvements across the entire 
residential housing sector, which is difficult to model due to the diversity of building stock, 
installed equipment, resident behavior, and climate conditions.  
 
The ResStock tool achieves this level of analysis by leveraging high performance computing 
applied to large public and private data sources such as the EIA’s Residential Energy 
Consumption Survey that detail home characteristics including square footage, window-type, 
insulation, and HVAC equipment. The tool uses statistical sampling to generate representative 
building energy datasets for different target regions. Then, utilizing the DOE OpenStudio and 
the industry standard EnergyPlus building modeling engine, the tool generates representative 
building energy models. EnergyPlus is a whole building energy simulation engine that models 
energy consumption for HVAC, plug, lighting, and other auxiliary loads. The OpenStudio 
software is a collection of software used to integrate EnergyPlus with other tools to facilitate 
large-scale building energy modeling.  
 
The ResStock team at NREL has used this framework to generate more than 20 million building 
energy simulations using statistical models of housing stock characteristics. These model runs 
provide detailed information on the technical and economic potential of different residential 
building retrofits and operational improvements. This framework allows for the identification of 
region-specific energy efficiency improvements with the highest potential for energy and cost 
savings. These analyses can then be utilized to determine how residential buildings can 
contribute to state energy and emissions targets. 
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The ResStock tool was used in multiple ways for this analysis. The tool was used to generate 
aggregate ERCOT-wide residential demand curves for the existing housing stock, projected out 
for 2050 using current weather patterns and updated future weather projections as previously 
outlined. These runs involved the simulation of 1,383 homes to represent the ERCOT residential 
building stock. The impacts of a suite of energy efficiency upgrades were also simulated, 
including increasing the attic insulation levels to a minimum of R-38, upgrading windows to 
dual-pane Low-E units, decreasing outside air infiltration to 7 ACH50, as well as swapping out 
the existing heating and cooling systems to SEER 18, 9.3 HSPF efficiency heat pumps.   
 
These new profiles were substituted for the existing residential building profiles in the overall 
ERCOT load by considering that, based on Figure 1, residential demand constitutes about 50% 
of overall total peak demand. The ResStock residential demand profiles generated (for the 
simulation of the 1,383 homes using actual weather year data for 2018, with no additional 
efficiency upgrades) were scaled up such that the aggregate value of residential demand was 
half of ERCOT’s 2018 peak demand, then both were scaled to 2050 values assuming an annual 
1.8% growth.  
 
Next, it was then possible to remove the 2050 residential demand profiles (based on today’s 
weather) and substitute in alternative (future climate scenario and efficiency upgrade 
combinations) future weather demand residential profiles which were scaled based on the 
increases or reductions in energy use from the ResStock analysis.  
 
Commercial demand 
To assess the impact of energy efficiency measures in the commercial building stock, we utilized 
the difference in energy use from the residential sector as a benchmark for estimating the 
change in commercial building energy use over the same period. Given that the change in 
commercial demand from low consumption periods to high consumption periods is roughly half 
that of residential demand (see Figure 1), we estimated that the impact of similar energy 
retrofits and climate scenarios would produce roughly half as much of a change as to the 
residential sector and scaled that portion of demand accordingly in the total ERCOT profiles. 
 
Demand response 
We modeled demand response as an input to the grid model, but assumed that it would 
include reductions in space conditioning and water heating during peak grid times. We assumed 
that, by 2050, demand response would reduce the ERCOT-wide peak demand by 5% (a 
conservative possibility given the potential is much higher) and demand response measures in 
the ERCOT market would take effect whenever demands were within 95% to 100% of peak 
demand over all times of the year. For example, if peak demand were 100 GW, we assumed 
that demand response reduced the peak to 95 GW and that all times of demand between 95 
GW and 100 GW were also reduced to 95 GW.   
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District heating and cooling demand in the residential sector 
We also developed future scenarios where the majority of residential heating and cooling 
demand were switched to district heating and cooling systems. Because residential energy use 
includes some non-space conditioning demands (such as lighting, computers, media consoles, 
etc.), we assumed that the first quartile of hourly demands represented this value, which 
roughly corresponds to values shown in Figure 1. The assumed non-HVAC “baseload” demand 
curves were very similar across each of the ResStock modeling runs that incorporated future 
climate scenarios. This similarity indicated that these baseload values were not meaningfully 
impacted by increasing the efficiency of the building envelope or HVAC systems. Thus, we then 
took the daily energy use above these baseload values as the space conditioning loads and 
aggregated them to daily summed energy for heating and cooling. These daily energy values 
were then evenly distributed over all hours of the day to simulate the ability of the district 
heating and cooling systems to provide space conditioning services via a flat load instead of 
individual heaters and air-conditioners ramping up and down throughout the day.  
 
Electric vehicle load growth  
To estimate the amount of electric vehicle charging that would be added to the 
aforementioned traditional loads, we developed a 24-hour curve of EV demand based on 
ERCOT’s 2018 Long-Term System Assessment for the ERCOT Region (LTSA) that forecasts ERCOT 
electric vehicle charging behavior in 2033 [20]. We assume that electric vehicles will charge 
according to this 24-hour pattern for each day of the year. To develop curves for years before 
and after 2033 (2020-2050), we assumed that the charging pattern scales linearly from no 
charging in 2015.4 Under this assumption, the electric vehicle load in 2015 is zero, in 2024, it is 
50% of the 2033 ERCOT profile and in 2042 it is 150% of the 2033 ERCOT profile. These daily EV 
charging profiles are shown in Figure 7. Next, we distributed the total electric vehicle charging 
profile among the 16 transmission regions based on population, adding the EV charging profile 
to each region’s hourly load profile. 
 

 
4 We recognize that there was some EV charging before 2015 but assumed it to be small relative to future EV 
demands. 
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Figure 7: Figure showing the daily assumed EV charging loads from 2020 to 2050. 

 
Distributed solar growth 
We calculated the impacts of distributed solar growth in a similar way to that of EV loads, 
except their generation profiles were subtracted from the total load profiles in each region. We 
began with ERCOT’s LTSA assumption that the region would see 5 GW of distributed solar by 
2033. As for electric vehicles, we assumed that the distributed solar profile scales linearly from 
2015 (~0 GW)5 and growing to 2.5 GW in 2024, 7.5 GW in 2042, and almost 10 GW by 2050. 
Next, the distributed solar capacity was allocated amongst the 16 transmission regions of the 
grid model, described in the next section, based on population.  
 
These regional distributed solar generation profiles were then subtracted from the traditional 
load + EV load curves to generate the final demand curves that were used as inputs to our 
ERCOT grid model to assess their impacts on grid development and operations. 
 
Updated ERCOT demand curves for grid modeling 
The potential changes to future demands described above resulted in 30 versions of ERCOT’s 
2050 hourly demand. Because the grid model simulates multiple intermediate time periods 
between the present and 2050, hourly values from 2020 to 2050 were linearly interpolated to 
develop intermediate hourly demand profiles for the years 2025, 2030, 2035, 2040, and 2045. 
These multiple years of hourly demand profiles were used as demand inputs to the grid model. 

 
5 We acknowledge that there was distributed PV on the ERCOT system before 2015 but assumed it to be small 
relative to future deployments. 



 

Energy Efficiency & Resilience in Extreme Weather Events 18 

 
Electric grid impacts 
The following describes the methodology around the development of the model used to assess 
the grid impacts of efficiency and demand response measures as developed above. 
 
ERCOT grid model 
The UT team has developed a capacity expansion model of the ERCOT electricity grid based on 
the open-source SWITCH 2.0 platform [21]. A capacity expansion model is an optimization 
program that makes decisions about the operation and construction of power plants, 
transmission lines, and other electric grid assets in a least cost and optimal way. The model 
accomplishes this task on both short and long-term time scales. On the short-term, the model 
dispatches the power plant fleet within each time period so that electricity generation and 
electricity demand are balanced for each hour of the simulation. Over the long-term, or 
between each time period, the model builds new power plant capacity to 1) provide enough 
power plants so that electricity generation and demand growth can be balanced in future years 
including with a target reserve margin, and 2) enable the composition of the power plant fleet 
to evolve in ways that minimize the total system cost or to meet user-specified constraints, 
such as carbon emission reductions. 
 
The ERCOT model was built using data about the existing power plant fleet and transmission 
capacity from ERCOT’s Seasonal Assessment of Resource Adequacy (SARA) and Capacity, 
Demand and Reserves (CDR) reports [22] as well as transmission line data from the Department 
of Homeland Security [23]. Demand data have been aggregated from historical ERCOT load 
curves [24] as well as edited by the methodology discussed above and apportioned by 
population to a 16-zone load and transmission topography shown in Figure 8. More details 
about the grid model construction and input assumptions can be found in Appendix D. 
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Figure 8: Figure showing the load zones and transmission connections of the ERCOT capacity expansion model used in this 
analysis. 

The results from each modeling run include the total amount of costs to operate the system, 
the dispatch of each power plant, the new infrastructure built, and the total amount of 
electricity generated by each fuel type [25].  
 
Model and dataset integration 
In summary, the updated weather datasets led directly to new demand curves as peak 
demands in Texas are largely driven by space conditioning loads. As temperature profiles 
change, so will the energy demand of the buildings that are looking to keep their occupants 
comfortable. These demand profiles are further changed by the deployment of distributed solar 
PV systems and electric vehicles. Then, the impacts of weather and other technologies, multiple 
energy efficiency measures were considered to temper the impacts of generally hotter and 
drier summers. 
 
The lessons learned from the analysis above can then be used to inform the discussion around 
the building code and energy assurance plan in a meaningful way. 
 
Building code and Energy Assurance Plan  
The building codes active across Texas cities and at the state level, as well as the codes that 
have been passed since Texas’s adoption of the 2015 IECC codes, were reviewed. Relevant 
building code literature has been reviewed, including building code analyses conducted by the 
Department of Energy. The review also incorporated climate-friendly policy recommendations 
that would contribute to making residences and commercial buildings safer in more extreme 
weather.  
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In addition to building codes, weatherization strategies were reviewed. Community action 
agencies across the state from multiple ERCOT weather zones were contacted to understand 
the most needed strategies in homes participating in the Weatherization Assistance Program 
and the Low-Income Home Energy Assistance Program.  
 
Finally, the team has made recommendations to update the Energy Assurance Plan (EAP) from 
current technologies and policies of 2012 to those of 2022 using the current EAP Table of 
Contents. Relevant literature relating to statewide energy sector recommendations since 
February 2021 that might improve the current Energy Assurance Plan that was published in 
2012 following the 2011 winter storm was reviewed. 
 

Results 
 
Weather datasets 
The following sections describe how historical weather patterns have impacted energy 
customer outages as well as how future weather patterns might deviate from today. 
 
Past weather events 
US Department of Energy OE-417 reports show over 200 occurrences of power outages in Texas 
associated with extreme weather events, including hurricanes, tropical storms, extreme heat, 
and extreme cold from 2002 to 2021 [16]. Most weather-related outages occur during extreme 
wind or precipitation events such as hurricanes, tornadoes, tropical storms, or less severe 
instances of high wind and precipitation. For example, Hurricane Harvey caused multi-day 
outages across the Texas Gulf Coast in 2017. 
 
Heat or high temperature related outages occurred in 2006 (1 day), 2008 (3 days), 2010 (2 
days), 2011 (16 days), 2015 (3 days), 2016 (6 days), and 2019 (4 days). Extreme cold related 
outages occurred in 2010 (5 days), 2011 (5 days), 2012 (4 days), 2014 (3 days), 2018 (4 days), 
2020 (1 day), and 2021 (18 days) as shown in Table 3. The effects of Winter Storm Uri in 2021 
caused two additional days of outages in June from tight grid conditions due to the high 
number of forced generation outages [26]. 
 
Table 3 Grid outages related to extreme heat or cold events in ERCOT between 2006 and 2021. Outages caused by hurricanes, 
tornadoes, tropical storms, or less severe instances of high wind and precipitation are not included. 

Year Extreme Heat Extreme Cold Note 
2006 1 --  
2007 -- --  
2008 3 --  
2009 -- --  
2010 2 5  
2011 16 5 Major winter storm and heat wave/drought 
2012 -- 4  
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2013 -- --  
2014 -- 3  
2015 3 --  
2016 6 --  
2017 -- --  
2018 -- 4  
2019 4 --  
2020 -- 1  
2021 -- 20 Winter Storm Uri caused outages in February and forced 

outages in June due to repairs 
 
 
While the number of days that power plants are impacted by weather is similar between 
extreme heat and cold events, the number of customers and the length of time for which they 
were impacted is very different. Cold-related events generally impact more customers for 
longer. The data indicate that customers are affected for much longer amounts of time due to 
power outages incurred due to extreme cold than extreme heat, as shown in Table 4. 
 
Table 4: Total reported customers impacted and total hours of outage for heat- and cold-related outage events in ERCOT by 
year. 

  Year Total 
Hours 

Total Customers 
Impacted 

Heat-related 
Outages 

2006 11 750,882 
2010 16 81,586 
2011 286 294,064 

Cold-related 
Outages 

2010 117 552,999 
2011 63 1,393,743 
2012 119 504,509 
2021 896 5,276,732 

 
Estimated future weather conditions 
The average for the years 2030-2039 and 2040-2049 of maximum daily temperature estimated 
in the NEX-GDDP-CMIP6 dataset, downscaled to the ERCOT weather zones is shown in Figure 9. 
While only a decade different, the maximum daily temperatures in the 2040s are generally 
higher than the maximum daily temperatures in the 2030s across all weather zones. However, 
maximum daily temperatures in late fall in the coastal, eastern, and southern weather zones 
are lower in the 2040s compared the 2030s. 
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Figure 9: Figure. Maximum daily temperature estimated for 2030s and 2040s in the weather zones of ERCOT, estimated via 

CMIP6, SSP1-2.6. 



 

Energy Efficiency & Resilience in Extreme Weather Events 23 

 

Figure 10: Figure. Maximum daily temperature estimated for 2030s and 2040s in the weather zones of ERCOT, estimated via 
CMIP6, SSP5-8.5. 
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While risk of extreme winter events was not modeled in this work, the team consulted State 
Climatologist John Nielsen-Gammon. Extreme winter weather events can be expected with a 
frequency of 1 in 20 currently. Over the next century, that risk is expected to reduce to 1 in 50. 
While the frequency is lower, it is still within a range to plan for, particularly because of the 
extreme impact and damage of winter storms. Complacency can increase that impact. 
 
Demand curve development results  
This section discusses the results of the demand curve development analysis as described in the 
Methodology section. 
 
ResStock results 
The ResStock modeling sought to assess the effect of two types of impacts on residential energy 
use: future weather conditions and energy efficiency upgrades. Note that the following figures 
in this section are results from simulations of a representative subset of residential buildings in 
the ERCOT region (1,383 homes) before they were scaled up to the entire residential sector of 
approximately 9 million homes. Figure 11 shows the impact of future weather scenarios on the 
energy use of residential buildings in the ERCOT region assuming a baseline of no energy 
efficiency upgrades. 
 

 
Figure 11: Figure showing the impact of future weather scenarios on residential energy consumption in ERCOT in 2050. 

In general, residential energy use in future weather scenarios decreases during the colder 
months and increases during the warmer months. This pattern is consistent with temperatures 
generally increasing in the future in both the summer and winter months. Relative to today’s 
weather6, the mildest future weather year (SSP1-2.6) is estimated to have lower overall energy 
use in the residential sector, with a decrease of about 1.1% by 2050, all else equal and assuming 

 
6 2018 actual weather data used. 
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no energy efficiency upgrades. This outcome is mainly due to lower overall energy use in the 
winter and shoulder months which offsets higher use in the warmer summer months. However, 
the other climate scenarios (SSP2-4.5, SSP3-7.0, and SSP5-8.5) suggest higher overall energy 
use, between 4.6% and 5.6% higher than the baseline of today’s weather.  
 
Figure 12 shows a similar plot to Figure 11, but assuming that all homes in the ERCOT region 
undergo a suite of energy efficiency upgrades by 2050 such that, by 2050, all homes in ERCOT 
have a minimum attic insulation level of R-38, dual-pane Low-E windows, and have been air-
sealed to an air infiltration rate of 7 ACH50, appliance upgrades are considered further down. 
Additional appliance level efficiency upgrades, such as upgrading water heaters could also 
provide efficiency gains across the building stock.  

 
Figure 12: Figure showing the impact of future weather scenarios on residential energy consumption in ERCOT if homes were to 

have a suite of energy efficiency measures deployed by 2050. 

Energy efficiency measures significantly reduced energy use from baseline values by an average 
of about 20% across today’s weather and all future weather scenarios, which is substantial. 
Within the energy efficiency scenario (values in Figure 12), the future weather scenarios 
followed a similar pattern to the baseline case with the mildest scenario (SSP1-2.6), yielding less 
energy use (-0.1%) than the today’s weather scenario while the other climate scenarios caused 
higher energy use, relative to today’s climate, of between 4.2% and 5.7%.  
 
Figure 13 shows the same data as Figure 12, but in addition to the energy efficiency upgrades, 
all HVAC units in the ERCOT housing stock have been replaced with SEER 18, 9.3 HSPF efficiency 
heat pumps. 
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Figure 13: Figure showing the impact of future weather scenarios on residential energy consumption in ERCOT if homes were to 

have a suite of energy efficiency measures and energy efficient heat pumps deployed by 2050. 

Relative to a baseline of no energy efficiency upgrades, the residential building energy 
efficiency upgrade and heat pump scenario uses about 30% less energy in 2050. Within this 
scenario, all future climate scenarios use more electricity when compared to today’s weather, 
between 0.1% more (SPP1-2.6) and between 4.4% and 5.7% more for the other climate 
scenarios.  
 
Figure 14 through Figure 18 show the impact of energy efficiency and heat pump upgrade 
measures on electricity use for all considered weather scenarios. In general, without energy 
efficiency measures, energy use increases with warmer future weather conditions. However, 
even under the warmest of future weather scenarios considered, energy efficiency measures 
are able to counteract the warmer weather and can actually reduce overall energy use to levels 
below the scenario of no efficiency upgrades and today’s weather. 
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Figure 14: Figure showing the impact of efficiency upgrades alone and efficiency upgrades paired with heat pump upgrades 

utilizing today's weather for a representative sample of residential buildings in ERCOT. 

 

 
Figure 15: Figure showing the impact of efficiency upgrades alone and efficiency upgrades paired with heat pump upgrades 

utilizing future weather scenario SSP1-2.6 for a representative sample of residential buildings in ERCOT. 
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Figure 16: Figure showing the impact of efficiency upgrades alone and efficiency upgrades paired with heat pump upgrades 

utilizing future weather scenario SSP2-4.5 for a representative sample of residential buildings in ERCOT. 

 

 
Figure 17: Figure showing the impact of efficiency upgrades alone and efficiency upgrades paired with heat pump upgrades 

utilizing future weather scenario SSP3-7.0 for a representative sample of residential buildings in ERCOT. 

 



 

Energy Efficiency & Resilience in Extreme Weather Events 29 

 
Figure 18: Figure showing the impact of efficiency upgrades alone and efficiency upgrades paired with heat pump upgrades 

utilizing future weather scenario SSP5-8.5 for a representative sample of residential buildings in ERCOT. 

Hourly demand results 
This section describes the final hourly demand profile results that were used as inputs into the 
grid modeling analysis. The residential results outlined in the previous section were combined 
with augmented commercial sector energy use profiles, district heating and cooling system 
impacts, and demand response methods to develop the 30 scenarios used to assess their 
impact on the evolution of the ERCOT grid. Table 5 shows some high-level statistics for each of 
the demand profiles generated and used in the grid modeling analysis. 
 

Table 5: Table showing summary statistics for each of the hourly demand profiles utilized in the grid modeling analysis. 

Scenario Weather 2050 Peak  
Demand (GW) 

Peak 
Day 

2050 Annual 
Energy (TWh) 

2018 Actual 2018 Actual 73,287 (2018) 19-Jul 377 (2018) 
     

BASE Today  144  19-Jul 799 
BASE SSP1-2.6  153  19-Jul 813 
BASE SSP2-4.5  158  6-Jan 837 
BASE SSP3-7.0  162  2-Aug 839 
BASE SSP5-8.5  149  6-Aug 820 

     
EF Today  125  19-Jul 703 
EF SSP1-2.6  129  19-Jul 717 
EF SSP2-4.5  132  28-Jul 732 
EF SSP3-7.0  134  2-Aug 731 
EF SSP5-8.5  128  21-Aug 720 

     
EF + ASHP Today  118  19-Jul 670 
EF + ASHP SSP1-2.6  120  19-Jul 677 
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EF + ASHP SSP2-4.5  121  19-Jul 685 
EF + ASHP SSP3-7.0  122  2-Aug 686 
EF + ASHP SSP5-8.5  119  21-Aug 679 

     
EF + ASHP + DHC Today  118  23-Jul 671 
EF + ASHP + DHC SSP1-2.6  118  20-Jul 677 
EF + ASHP + DHC SSP2-4.5  121  28-Jul 686 
EF + ASHP + DHC SSP3-7.0  120  29-Jul 686 
EF + ASHP + DHC SSP5-8.5  118  29-Jul 679 

     
EF + ASHP + COMM Today  105  19-Jul 593 
EF + ASHP + COMM SSP1-2.6  107  19-Jul 592 
EF + ASHP + COMM SSP2-4.5  106  19-Jul 591 
EF + ASHP + COMM SSP3-7.0  107  2-Aug 593 
EF + ASHP + COMM SSP5-8.5  106  21-Aug 595 

     
EF + ASHP + COMM + DR Today  100  31-May 593 
EF + ASHP + COMM + DR SSP1-2.6  101  28-Jun 592 
EF + ASHP + COMM + DR SSP2-4.5  101  2-Jul 591 
EF + ASHP + COMM + DR SSP3-7.0  102  27-Jun 593 
EF + ASHP + COMM + DR SSP5-8.5  100  30-May 595 

 
In Table 5, Scenario refers to the inclusion (or not) of various types of efficiency upgrades or 
other aspects considered where in the “Scenario” column BASE means no energy efficiency 
upgrades were considered, EF refers to residential energy efficiency upgrades7, ASHP refers to 
the upgrading residential heating and cooling equipment upgrades8, DCH refers to the 
switching of residential heating and cooling to district heating and cooling systems, COMM 
refers to the inclusion of similar energy efficiency upgrades to commercial buildings, and DR 
refers to the inclusion of demand response. Multiple values in the same row indicate that each 
of those augmentations were considered in that scenario. 
 
In the “Weather” column, Today refers to the assumption that the weather and climate in 2050 
will be like the weather and climate is now and SSP1-2.6 to SSP5-8.5 refer to future weather 
scenarios where 2050 is generally warmer than today (see Section: Estimated future weather 
conditions). The column “2050 Peak Demand” refers to the highest hourly demand value for 
that scenario in 2050 in giga-watts (GW), the column “Peak Day” refers to the day that the grid 
experienced peak demand in 2050 in that scenario, and the column “2050 Annual Energy” 
refers to the amount of electricity consumed by ERCOT in 2050 for each scenario in terawatt-
hours (TWh). 
 

 
7 Including increasing the insulation attic insulation levels to a minimum of R-38, upgrading windows to dual-pane 
Low-E units, decreasing outside air infiltration to 7 ACH50. See Section: Residential demand. 
8 Upgrading all existing HVAC units to SEER 18, 9.3 HSPF efficiency heat pumps. 
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In each scenario group (BASE, EF, EF + ASHP, etc.), more extreme future weather scenarios 
generally meant higher overall energy use and higher peak demand values. However, the 
energy efficiency measures deployed in this analysis acted as a buffer against higher levels of 
overall energy use and peak demand in the face of more extreme future temperatures. For 
example, in the BASE scenario case, energy use was up to 5% higher and peak demand about 
4% higher in future weather scenarios compared to energy use with today’s weather. However, 
in the case with the highest levels of efficiency and demand response (EF + ASHP + COMM + 
DR), the energy use and peak demand implications of more extreme future weather are much 
more muted, with energy use flat and peak demand increasing by only 1.6% relative to today’s 
weather.  
 
Compared to 2018 energy use and peak demand, the highest 2050 case of no energy efficiency 
measures and warmer weather increases energy use and peak demand by over 120%, whereas 
energy efficiency measures and demand response measures can limit energy use growth to less 
than 60% and peak demand growth to less than 40% in 2050 over 2018 values. 
  
Grid modeling results 
This section discusses the results of the grid modeling analyses that sought to assess the grid 
impacts of the various future weather and efficiency futures discussed above. Table 6 shows 
the high-level summaries of some of the key findings of the grid modeling studies.  
 

Table 6: Table showing high-level results from the grid modeling analysis part of this study. Note that all values are for 2050 
except the first row, which are the actual values for today (2018/2021) which are included for comparison. 

Scenario Weather 

Total Power 
Plant 

Capacity 
(GW, 2050) 

Total 
Transmission 

Capacity  
(GW, 2050) 

Energy Cost  
($/MWh, 

2050) 

Carbon 
Intensity 

(kgCO2/MWh, 
2050) 

2018 Actual 2018  100 (2018) 41 (2018) 35.63 (2018) 3859 
      

BASE Today 226 103 24.99 80 
BASE SSP1-2.6 221 92 21.81 72 
BASE SSP2-4.5 232 101 22.21 93 
BASE SSP3-7.0 234 88 20.87 76 
BASE SSP5-8.5 221 90 23.27 74 

      
EF Today 188 90 18.93 44 
EF SSP1-2.6 189 93 19.32 45 
EF SSP2-4.5 196 102 20.22 51 
EF SSP3-7.0 196 95 19.84 46 
EF SSP5-8.5 191 93 19.14 45 

      
EF + ASHP Today 180 93 17.61 33 
EF + ASHP SSP1-2.6 177 91 18.2 37 

 
9 Based on 2021 data for Texas from Carnegie Melon University’s Power Sector Carbon Index [82]. 
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EF + ASHP SSP2-4.5 182 98 15.46 38 
EF + ASHP SSP3-7.0 180 90 17.72 38 
EF + ASHP SSP5-8.5 177 92 16.66 37 

      
EF + ASHP + DHC Today 170 97 16.75 35 
EF + ASHP + DHC SSP1-2.6 172 92 18.41 35 
EF + ASHP + DHC SSP2-4.5 184 99 18.61 37 
EF + ASHP + DHC SSP3-7.0 174 96 16.79 35 
EF + ASHP + DHC SSP5-8.5 177 93 18.29 34 

      
EF + ASHP + COMM Today 157 81 16.79 27 
EF + ASHP + COMM SSP1-2.6 151 74 13.95 35 
EF + ASHP + COMM SSP2-4.5 155 84 15.34 30 
EF + ASHP + COMM SSP3-7.0 153 74 14.30 34 
EF + ASHP + COMM SSP5-8.5 153 78 13.16 34 

      
EF + ASHP + COMM + DR Today 157 81 14.38 27 
EF + ASHP + COMM + DR SSP1-2.6 151 74 13.95 35 
EF + ASHP + COMM + DR SSP2-4.5 155 84 15.57 30 
EF + ASHP + COMM + DR SSP3-7.0 153 74 14.29 34 
EF + ASHP + COMM + DR SSP5-8.5 153 78 13.42 34 

 
Similar to Table 5, in Table 6, Scenario refers to the inclusion (or not) of various types of 
efficiency upgrades or other aspects considered where in the “Scenario” column BASE means 
no energy efficiency upgrades were considered, EF refers to residential energy efficiency 
upgrades10, ASHP refers to the upgrading residential heating and cooling equipment 
upgrades11, DCH refers to the switching of residential heating and cooling to district heating and 
cooling systems, COMM refers to the inclusion of similar energy efficiency upgrades to 
commercial buildings, and DR refers to the inclusion of demand response. Multiple values in the 
same row indicate that each of those augmentations were considered in that scenario. 
 
In the “Weather” column in Table 6, Today refers to the assumption that the weather and 
climate in 2050 will be like the weather and climate is now and SSP1-2.6 to SSP5-8.5 refer to 
future weather scenarios where 2050 is generally warmer than today (see Section: Estimated 
future weather conditions). The column “Total Power Plant Capacity” refers to the sum total, in 
giga-watts (GW), of the power plant capacity on the ERCOT system in 2050 for that 
scenario/weather combination and the column “Total Transmission Capacity” refers to the total 
amount of transmission capacity, in GW, present on the system in 2050. The column “Energy 
Cost” refers to the average annual cost, in $/MWh, of wholesale electricity in the ERCOT market 
in 2050 and the column “Carbon Intensity” refers to the average annual carbon intensity (kg-
CO2/MWh) of electricity in the ERCOT grid in 2050 for that scenario/weather combination.  

 
10 Including increasing the insulation attic insulation levels to a minimum of R-38, upgrading windows to dual-pane 
Low-E units, decreasing outside air infiltration to 7 ACH50. See Section: Residential demand. 
11 Upgrading all existing HVAC units to SEER 18, 9.3 HSPF efficiency heat pumps. 
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Similarly to the hourly demand results, the grid modeling analyses indicated that more extreme 
future weather within each scenario group would, in general, require more total power plant 
and transmission line capacity than milder weather years. However, this pattern did not always 
hold within each scenario group and the effect was less pronounced than in the demand 
profiles. The types of power plants chosen by the model are not only based on the amount of 
energy needed, but also strongly impacted by when that energy is needed, known as the 
demand shape.  
 
The shape of the demand can change based on the weather, i.e. more air-conditioning use on 
hotter afternoons, or by efficiency upgrades such as more insulation that shifts (lower) cooling 
needs to later in the day, or demand response measures that reduce demand during certain 
periods. Thus, if the shape of the demand curve shifts to better align with the output from solar 
or wind, the model is likely to choose more of that because they are often among the cheapest 
technologies to deploy. If the shape of the demand curve shifts away from such production 
profiles, the model might choose a more dispatchable technology, such as natural gas, even if it 
costs more per unit energy generated.  
 
However, across a range of scenarios energy efficiency and demand response measures clearly 
reduced the need to build as many power plants by about 35% compared to the BASE scenario 
coupled with more extreme weather and transmission lines and by as much as about 27% 
compared to the BASE scenario coupled with more extreme weather.  
 
The cost of electricity ($/MWh) and the carbon intensity of electricity (kg-CO2/MWh ) also 
generally decline in more efficient future scenarios. Figure 19 to Figure 22 show the total 
capacity and energy generation results for the ERCOT grid for the BASE scenario with SSP3-7.0 
weather and the EF + ASHP + COMM + DR with SSP3-7.0 weather. The same figures for the rest 
of the scenario are available in Appendix A. 
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Figure 19: Figure showing the total capacity for various generation types in the ERCOT grid in the BASE scenario assuming SSP3-
7.0 weather. 

Figure 19 shows the change in each type of generation capacity in the BASE scenario with SSP3-
7.0 weather for 2020 to 2050. Note that smaller generation types, such as biomass and oil, 
were not included given their relative smaller size. In general, the model builds more wind, 
solar, and battery systems in the earlier years, natural gas declines in the 2030s to mid 2040s 
before rebounding in 2050, nuclear stays constant at today’s levels, and most coal retires by 
2050. Also, by 2050, we see some wind farms beginning to retire and not all are replaced with 
just more wind. Note that power plants are retiring throughout the analysis period as they 
reach the end of their economic life and Figure 19 shows only total capacity of that type of 
plant in that year. For example, the capacity of natural gas combined cycle units increases from 
2020 to 2050, but over the same time period, the model retires about 60% of the less efficient 
natural gas combustion turbine units. Figure 20 shows data for the same scenario, but instead 
shows the percentage of electricity generated by each fuel type from 2020 to 2050. 
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Figure 20: Figure showing the amount of energy generated by fuel type in the ERCOT grid from 2020 (actual) to 2050 in the BASE 
scenario assuming SPP3-7.0 weather. 

Figure 20 shows the change in the percentage of electricity generated by each major fuel type12 
from 2020 to 2050. Note that the amount of electricity being generated more than doubles 
from 2020 to 2050, in this scenario from about 377 TWh to 839 TWh, see Table 5. In this 
scenario, the model results indicate that the 2050 grid evolves to see about 53% of electricity 
generation come from wind, 22% from natural gas, 19% from solar, 5% from nuclear and the 
remining 1% from coal which is too small to see in the figure.  
 
For comparison, Figure 21 and Figure 22 show the same data as above, assuming the same 
more extreme future weather but for the most efficient scenario considered (EF + ASHP + 
COMM + DR).  

 
12 Biomass and oil not shown for being < 0.01% of the total. 
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Figure 21: Figure showing the total capacity for various generation types in the ERCOT grid in the EF + ASHP + COMM + DR 
scenario assuming SSP3-7.0 weather. 

 
This more efficient scenario requires much less energy (593 TWh vs. 839 TWh) in 2050 and thus 
requires less overall power plant capacity (153 GW vs. 234 GW) to meet a more efficient future. 
In this scenario, solar grows quickly early before plateauing at about 40 GW, whereas wind 
continues to grow through 2045 before seeing some retirements take effect. Energy storage 
(battery) capacity grows quickly and then continues to grow in the 2040s. Total natural gas and 
coal capacity decline as other technologies take their place and nuclear capacity remains 
constant. Similar to the previous scenario, Figure 22 shows an increasing share of total 
electricity generated coming mostly from wind and solar.  
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Figure 22: Figure showing the amount of energy generated by fuel type in the ERCOT grid from 2020 (actual) to 2050 in the EF + 
ASHP + COMM + DR scenario assuming SPP3-7.0 weather. 

Figure 33Figure 92Figures showing the same results for each of the other scenarios are included 
in Appendix A. 
 
Winter Storm Uri analysis 
This section includes an independent look at the impact of events such as Winter Storm Uri on 
how the grid might evolve if it were designed to fully accommodate such an event. Even though 
the impacts of these types of events are massive the future weather analysis indicated that 
their future frequency could decline. The same grid modeling assumptions were used for this 
sub-analysis, with the exception of different assumptions about future demand. Essentially, the 
only difference between the following two scenarios is that the “normal” winter week of 
February 13-20, 201813 in the “no winter storm” case was taken out and the actual data from 
February 13-20, 2021 was used in its place.  Figure 23 shows the capacity evolution of the 
electricity grid from 2020 to 2050 not considering a future storm such as Winter Storm Uri. 
 

 
13 2018 was used as the base case year and scaled up to 2050 assuming 1.8% growth per year. 
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Figure 23: Figure showing the total capacity for various generation types in the ERCOT grid from 2020 to 2050 not considering a 
future winter storm on the same level as Winter Storm Uri. 

Note that the results shown in Figure 23 are not directly comparable to other base cases in this 
analysis, such as that shown in Figure 33 as their respective future load profiles were calculated 
slightly differently. In this “no winter storm” base case, natural gas, solar, energy storage, and 
wind all generally increase with wind declining (retiring) on net in capacity after 2045, nuclear 
stays constant at today’s levels and most coal retires. Figure 24 shows the energy generation by 
fuel type results for the same scenario. 

 
Figure 24: Figure showing the energy generation by fuel type in ERCOT from 2020 to 2050 not considering a future winter storm 
on the same level as Winter Storm Uri. 
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In this case, natural gas maintains about a third of the total amount of electricity generated in 
ERCOT from 2020 to 2050, with wind growing to about half. Figure 25 shows the total installed 
capacity of the ERCOT grid if we assume that a winter storm event such as Winter Storm Uri 
were to happen every year.  
 

 
Figure 25: Figure showing the total capacity for various generation types in the ERCOT grid from 2020 to 2050 assuming that a 
future winter storm on the same level as Winter Storm Uri happens regularly.  

The major difference between the winter storm and non-winter storm case is the amount of 
natural gas generation capacity deployed in the former case with the winter storm case 
deploying about 40 GW more natural gas capacity by 2050 than the non-winter storm case. 
Overall, the winter storm case required about 15% more power plant capacity by 2050 than the 
non-winter storm case (285 GW vs. 247 GW) Note that the model used did not take into 
account the loss of power plants or fuel due to weather conditions that, in February 2021, 
resulted in roughly half of the ERCOT power plant fleet being offline [27] [28]. However, except 
for about 5 GW more battery storage in the winter storm case, the other capacity types stayed 
roughly similar. In fact, Figure 26 shows that the energy generation by fuel type in the winter 
storm case are almost identical to that in the non-winter storm case. 
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Figure 26: Figure showing the energy generation by fuel type in ERCOT from 2020 to 2050 considering a future winter storm on 
the same level as Winter Storm Uri happens regularly. 

While not a part of this analysis, previous work has shown that more efficient buildings are able 
to withstand the loss of electricity for longer periods while maintaining more safe living 
temperatures [29]. The above analysis and these results indicate that energy efficiency retrofits 
and more stringent building codes can not only save energy and reduce costs, but also keep 
buildings livable in future situations when electricity is no longer available to power air-
conditioning and heating systems.  
 
All the data that support and underlie each of the modeling scenario results are available for 
download from the Texas Data Repository14.  
 
Building codes and energy efficiency programs  
The installation and deployment of energy efficiency technologies and demand response tools 
are presently incentivized or required through building codes or energy efficiency programs. 
Because of the overlap between energy efficiency and making homes more resilient to power 
outages, many of these programs can provide Texas residents with an avenue to improve the 
energy efficiency and resilience of their homes. 
 
Texas has adopted the 2015 International Energy Conservation Code (IECC) and American 
Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1-2013 for 
commercial buildings. The state adopted the 2015 IECC residential code with amendments for 
residential buildings [30]. Both were effective as of 2016, moving the state from 2009 IECC 
residential and 2010 ASHRAE commercial standards to the 2015 updates [30]. The state 
enforces codes on state-owned or -funded buildings. Local code enforcement applies to other 
buildings [30].  

 
14 https://dataverse.tdl.org/dataverse/EEandResilience 
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Many local communities have adopted earlier building codes. For example, some communities 
have adopted 2009 IECC codes. While the 2006 codes use heat pumps as the baseline efficient 
technology, the Department of Energy has asserted that the 2009 codes are not clear in this 
respect [31]. The 2012 IECC code was updated and clarified to further outline the benefit of 
heat pumps over electric resistance heating, essentially penalizing electric resistance heating 
[31]. Homes with electric with the latter would have a harder time complying with subsequent 
building code updates compared to those with heat pumps. Communities with 2009 codes are 
potentially encouraging less efficient heating in new buildings. 
 
Weatherization and energy efficiency programs reach an additional subset of buildings, 
residences of low-income individuals. The Texas weatherization program is administered by the 
Texas Department of Housing and Community Affairs (TDHCA) with funding from the 
Department of Energy’s Weatherization Assistance Program (WAP) and the Department of 
Housing and Urban Development’s Low-Income Home Energy Assistance Program (LIHEAP). 
Additional funding might be supplied by the energy utility. Weatherization subgrantees 
receiving money from TDHCA conduct diagnostic assessments to determine the upgrades 
needed for homes to address energy use, health, and safety. Using these assessments, they 
make prescribed updates to homes including attic, wall, floor, and pipe insulation; ASHRAE 
compliant exhaust fans; smoke and carbon monoxide detectors; air sealing; duct sealing; new 
refrigerators and water heaters; air conditioning and heating tune-up or replacement; solar 
screens; and improved windows. Low-cost measures such as low-flow shower heads and 
aerators, LED bulbs, weather-stripping, and water heater tank wraps, are also included. Minor 
gas leak repairs might be conducted if needed. In some areas, homes need all of the upgrades 
prescribed in the weatherization program. In others, some upgrades do not meet the savings to 
investment ratio determined by the National Energy Audit Tool after the initial audit. Program 
officers identified attic and wall insulation as well as sealing air infiltration as commonly needed 
upgrades. New roofs are the most needed revision but WAP and LIHEAP funding cannot be 
used for this service. In 2020, 2,615 dwellings in Texas were served through these programs 
[32]. 
 
The building codes apply to new construction and additions, meaning, while building codes can 
be impactful, they can only reach a subset of buildings. Weatherization programs can serve low-
income individuals but, due to capacity constraints, reach fewer than 3,000 households per 
year in Texas. Additionally, renters are less likely to benefit as the landlord must allow upgrades 
to the property. Thus, many low-income individuals miss out on the building energy, health, 
and safety upgrades. Neither building codes nor weatherization reaches the remainder of 
existing homes. 
 
Housing codes do apply to existing dwellings; however, they are often reactively rather than 
proactively enforced, to prioritize violations over inspections. For tenants, this type of 
enforcement means they must report a violation. Many might be unaware of the process, and 
marginalized tenants might be reticent to do so even if they are aware [33]. 
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More detailed information about the energy efficiency programs offered by energy utilities in 
Texas and the types of services and customers these programs provide is given in Appendix B . 
 
Survey of Energy Utility Professionals’ Perspectives of Resilience in Energy Efficiency 
Programs 
As part of this project and to gain a better standing of the current utility environment and 
barriers to deployment of further energy efficiency and resilience technologies, HARC and 
Frontier Energy conducted a survey of utility professionals regarding utility energy efficiency 
programs, home energy resilience, and regulations and policy.  
 
Survey responses indicated that legislative, regulatory, and program changes are needed to 
implement resilience measures under utility energy efficiency programs and that current 
regulatory and program standards limit the inclusion of more resilience measures. Insulation, 
including ceiling, wall, and piping, are the most recommended and most prioritized under 
current program guidelines to improve the resilience of a home. Full survey results are provided 
in Appendix C . 
 

Conclusions and Recommendations 
 
Increasing electricity demand and future extreme weather events will put strain on the Texas 
electric grid. Historic events have shown the devastating impacts of grid outages and the need 
for resiliency planning and preparation for the future. Energy efficiency and demand response 
technologies can play a significant role in reducing future energy needs and peak demand and 
improve resiliency.  
 
Several analyses were conducted to assess the impact of energy efficiency and demand 
response in Texas over several future weather scenarios, including baseline and three climate 
scenarios of differing severity. Hourly weather profiles for these future scenarios were 
developed to support building energy and grid modeling. The impacts of several energy 
efficiency and demand response measures, including residential and commercial energy 
efficiency, air source heat pumps, district heating and cooling, and demand response were 
included in the analyses.  
 
Results from the residential building modeling show energy efficiency significantly reduces 
future building energy demands, even in more extreme climate scenarios. Because residential 
electricity consumption is responsible for about half of peak power demand in the winter and 
summer in Texas, residential energy efficiency and demand response programs are a uniquely 
large opportunity. 

• Relative to a baseline of no energy efficiency upgrades, energy efficiency measures 
significantly reduced energy use by an average of about 20% across today’s weather and 
all future weather scenarios. 
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• Relative to a baseline of no energy efficiency upgrades, installing energy efficiency 
upgrades and heat pumps in residential buildings in Texas uses about 30% less energy in 
2050. 

• Compared to 2018 energy use and peak demand, the highest 2050 case of no energy 
efficiency measures and warmer weather increases energy use and peak demand by 
over 120%, whereas energy efficiency measures and demand response measures can 
limit energy use growth to less than 60% and peak demand growth to less than 40% in 
2050 over 2018 values. 

 
Results from the grid modeling show that implementing demand response and energy 
efficiency measures decrease total electricity consumption and peak demand, even in extreme 
future weather scenarios.  

• Energy efficiency and demand response measures reduced the need to build as many 
power plants by about 35% compared to the baseline scenario coupled with more 
extreme weather. 

• Energy efficiency and demand response measures reduced the need to build 
transmission lines by as much as about 27% compared to the baseline scenario coupled 
with more extreme weather. 

• The most efficient scenario (EF + ASHP + COMM + DR) requires much less energy (593 
TWh vs. 839 TWh) in 2050 compared to a no efficiency measures alternative under the 
future weather conditions. 

 
To complement the analyses and provide information on the mechanisms to deploy energy 
efficiency and demand response tools, we did a review of existing programs and a survey of 
existing utilities. While there are some existing programs at the state and federal level that 
work to implement energy efficiency and demand response, there is significant opportunity and 
need to expand and revise these programs and associated regulations to fully realize the 
significant energy savings and resiliency potential of energy efficiency and demand response. 
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Energy Assurance Plan Recommendations 
 
Based on this study, the team has developed recommendations for updating the Energy 
Assuredness Plan sections, outlined in brief below and shown in italics.  
 
Table of Contents ii 
Table of Figures v 
 
JOINT SECTION 1 
Executive Summary 1 
The State of Texas 3 
General Threats to the State 5 
Natural Disasters 5 
 Recommendation: Include various hazard risks listed by NOAA via disaster risk maps15 
Texas experiences a variety of hazards. According to NOAA’s assessment of billion-dollar 
disasters, Texas has experienced up to $50B in damages from drought, over $200B in damages 
from tropical cyclones, up to $20B in damages from flooding, up to $5B in damages from 
wildfire, up to $1B in damages from freeze and $50B from winter storm, and up to $100B in 
damages from severe storms. Severe weather events often damage energy infrastructure, 
limiting energy supplies across the state. Some areas of the state experience certain disasters 
with greater frequency. It is important to plan for potential risks, understanding both frequency 
and severity. 
 
Terrorism and Crime 7 
Texas Strategy 10 
Texas Homeland Security Strategic Plan 10 
Emergency Response 18 
Annex L to the State Emergency Management Plan 18 
Other Annexes to the State Emergency Management Plan............... 21 
Energy Interdependency................................. 26 
Natural Gas as a Fuel Source for Electricity 27 
 
PUBLIC UTILITY COMMISSION SECTION 33 
Introduction 34 
Texas Transmission Grids 37 
Wholesale Market Entities 41 
Retail Market Entities 43 
Statistical Description of Energy and Expenditures. 45 
Private Industry 46 
Mutual Assistance 47 
Trade Associations.. 49 
Emergency Management................................. 50 

 
15 https://www.ncei.noaa.gov/access/monitoring/billions/mapping 
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Infrastructure Policy Section of the PUC 50 
Emergency Response Structure 52 
Emergency Outage Tracking 54 
Emergency Response 57 
ERCOT Emergency Measures 57 
Industry Emergency Response 61 
The State 63 
New Energy Resources 66 
 Recommendation: Add hydrogen. 
Hydrogen is used for fertilizers and in the chemical and liquid fuels industries on the Gulf Coast. 
It can be stored directly or in carrier form (such as ammonia, methanol, or formic acid). Because 
hydrogen can be stored and used as fuel, it can also be used as fuel in heavy-duty vehicles and 
other forms of transportation as well as in power applications using turbines and fuel cell 
technologies [34]. There are already plans to use hydrogen, blended with natural gas, to 
generate electricity in gas turbines [35]. 
 
Hydrogen’s point of use greenhouse emissions profile is minimal, and its lifecycle carbon 
intensity depends on how it is produced. When produced through electrolysis with renewable 
electricity, such as wind or solar, an electrochemical reaction splits water into hydrogen and 
oxygen without emitting carbon dioxide. Hydrogen can be produced with fossil fuels through 
steam reforming, gasification, or methane pyrolysis. To lower the carbon intensity, greenhouse 
gas emissions can be trapped and stored through carbon capture and storage (CCS). Because it 
is possible to produce carbon-neutral hydrogen, using gas turbine assets for power generation 
with hydrogen could be near-zero emissions.  
 
Hydrogen use in power generation could support reliability and resiliency on the grid as a firm 
power generation source, supporting intermittent renewable power generation. Moreover, 
hydrogen can be produced and stored as a mode of flexible demand or demand response when 
there is excess electricity. Production can then be halted when electricity is scarce. 
 
National net-zero models show increased use of hydrogen in medium- and heavy-duty trucks 
and in blends with natural gas in power generation. For example, Princeton’s Net Zero America 
shows blends of 60-100% hydrogen or synthetic gas in gas turbines by 2050 while Williams et al. 
employs <10% blends of hydrogen in most of the scenarios modeled. Hydrogen provides 
reliability on the grid as a flexible demand. It is produced with excess renewable electricity and 
stored for future use, particularly in scenarios with high renewable penetration allowing for 
productive use of renewable electricity rather than curtailment. Furthermore, if hydrogen is 
adopted to help decarbonize hard to abate sectors such as transportation and industry. 
 
Renewable Energy Mandate 68 
 Recommendation: This mandate has been achieved. This section could be removed. 
Wind Generation 69 
Distributed Generation 75 
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Recommendation: Split solar and geothermal into their own sections. In this section, 
add a review of distributed generation technologies that may be more relevant in 
Texas in the future. 
 

• Solar 
Solar panels absorb and use a portion of the sun’s light to provide heat or electricity. Texas, 
particularly West Texas, is an ideal location for solar due to high solar irradiance.  
 

 
Figure 27: Figure showing daily average solar radiation (global horizontal) values across the US [36]. 

 
Solar can be used on the rooftops of homes and businesses or at the larger utility-scale to be 
sold to anyone buying power from the electricity grid. With community solar, individuals or 
groups share ownership of and use power generated by a local solar farm. For example, MP2 
and Local Sun provide community solar from Sealy, TX through a retail electric plan. 
 
Solar power is only available when the sun is shining and does not provide conventional system 
inertia to the power grid.16 Using a battery with solar power pairs the benefits of both 
resources—a battery could use solar panels to charge during the day and discharge at night 
when the sun is no longer shining. Similarly, other firm resources can provide reliability to the 
grid or, on a smaller scale, to a microgrid when solar power is not available. With higher 

 
16 Pilot demonstrations have shown the ability to provide some synthetic inertia to help maintain the reliability of 
the grid [88] [89]. 
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penetrations of solar, the grid will need to be designed with ancillary services for reliability, 
flexibility, inertia, and energy storage. 
 
Net zero studies such as the White House’s “The Long-Term Strategy of the United States,” 
Williams et al., Vibrant Clean Energy’s Zero by Fifty, Princeton’s Net Zero America, Electric 
Power Research Institute’s “Powering Decarbonization: Strategies for Net-Zero CO2 Emissions,” 
and Berkeley 2035 model heavy reliance on solar power to 2050. Depending on the study or 
scenario, wind and solar power together supply between 43-91% of electricity generation due to 
major installations and generation increases. To reach this level of penetration, wind and solar 
capacity must rapidly increase between now and 2035. Factors such as land use, high renewable 
energy prices, or low natural gas prices constrain growth of wind and solar. When land use is 
constrained, residential photovoltaic (PV) solar generation increases faster but concentrated 
solar power (CSP) does not increase in any major net zero study. To maintain reliability, some 
net zero studies rely on flexible demands. For example, excess solar and wind resources are used 
to generate hydrogen via electrolysis for long-term energy storage. Other flexible demands 
include direct air capture and electric boilers. More transmission, including interconnection 
across grids, is needed to connect solar and wind resources to demand centers. Princeton Net 
Zero America estimates a need for a ~60% increase in transmission by 2030 that will then triple 
by 2050. 
 
Residents who choose their own electricity provider can switch to a plan that uses 100% 
renewable energy. Shop on Texas's official site: PowerToChoose.com. Use the filter "Renewable 
Energy" to choose "100% Renewable" and refresh your results. Find out if rooftop PV solar 
would be a good fit for your home at solartexas.harcresearch.org. 
 

• Geothermal 
 
Geothermal employs heat from below the earth’s surface for energy. It is a source for firm 
renewable energy because heat is continuously produced. Geothermal is classified for three 
uses: direct use and district heating, electricity generation, and heat pumps. 
 
Direct use and district heating use naturally occurring springs and reservoirs near the earth’s 
surface to provide for bathing, cooking, and heating. This method is common in areas with 
naturally occurring hot water near the earth’s surface, such as Iceland. 
 
Geothermal electricity generation uses hot water or steam from deep below the earth’s surface, 
accessed via drilling steam or hot water wells. Because hydrothermal resources can be accessed 
on demand, these geothermal resources can be a firm, dispatchable power source for electricity. 
Using a firm renewable energy source to augment other intermittent renewable energy provides 
reliability to the grid without producing additional greenhouse gases. Geothermal power plants 
in the U.S. are located near hydrothermal reservoirs in western states. Texas has modest 
hydrothermal resources for electricity as shown in the figure below.  
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Figure 28: Figure showing hydrothermal resources across the US [37]. 

 
Net zero studies have estimated modest growth in geothermal electricity generation. For 
example, Vibrant Clean Energy’s Zero by Fifty and Princeton’s Net Zero America both emphasize 
the importance of continuing to invest in advanced geothermal to be able to use this technology 
in the future, lowering its projected cost and potential for earlier installation. 
 
Additionally, residential and commercial buildings can take advantage of geothermal resources 
through ground source heat pumps taking advantage of the constant natural temperature of 
the earth’s surface. These heat pumps are an efficient renewable energy technology that uses 
the earth to maintain a constant temperature year-round, transferring naturally existing heat 
from the ground to the surface in winter and to the ground in summer rather than combusting 
fuels. Net zero studies estimate modest use of geothermal heat pumps in both residential and 
commercial buildings by 2050. 
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Figure 29: FIgure showing the layout of a closed-loop geothermal heating and cooling system [38]. 

• Nuclear – SMR, MSR 
 
Molten salt reactors (MSRs) use molten salts as a coolant, specifically fluoride salt [39]. Nuclear 
fuels such as thorium, uranium, and plutonium dissolve into the molten fluoride and can be 
easily separated from one another. Because fuels are liquid, solid fuel is not required, 
eliminating the need to dispose of the fuel. MSRs generate high-temperature heat that can be 
used for electricity or process heat applications. MSRs date back to the 1960s. 
 
Small Modular Reactors (SMRs) are advanced distributed nuclear reactors with small footprints, 
meaning they have reduced capital costs and easier siting compared to traditional nuclear 
plants [40]. Reactors might vary in size from tens to hundreds of megawatts and can be used for 
power generation, process heat, or other applications. 
 
In its net zero by 2050 study, Vibrant Clean Energy employs MSR and SMR technology in 
technologically advanced scenarios, assuming the technologies will mature to a point where 
they can be used at scale. Other net zero studies rely on nuclear, generally but indicate that it is 
important to continue to invest in these advanced technologies to make progress in maturation, 
scale, cost, and performance. 
 
Storage Technologies 78 
New Energy Issues 85 

Recommendation: Split demand response (mentioned in Smart Grid, Economic 
Variables, and Resource Adequacy) into its own section and include potential in each 
major sector, such as EV charging, space conditioning, and water heating. 
 

Demand response is a way for electricity users to participate in the grid and assist with reliability 
by reducing electricity use during peak periods or shifting it to non-peak times [41]. Demand 
response programs use financial incentives like time-of-use rates to encourage these reductions 
or demand shifts. In Texas, industrial users participate in demand response programs. However, 
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commercial or residential users can also participate in demand response. Some utilities use 
smart thermostats or other smart devices to achieve peak demand reductions in commercial 
and residential buildings. 
 
In the future, net zero studies estimate that flexible demands that can respond to supply 
constraints will be integral to maintaining grid reliability, specifically because of the increased 
use of variable renewable energy resources like wind and solar. When demands can respond 
flexibly, they can match the electricity sources with more intermittent supplies. Additionally, 
they can respond to locational supply constraints such as transmission congestion that could 
limit electricity supplies reaching demands. Flexible demands could also increase their use when 
electricity supply exceeds demand. Flexible demands included in Princeton’s Net Zero America 
and Williams et al. include electrolysis, electric boilers, direct air capture, and storage. 
Additional residential, commercial, and transportation demands include smart charging for 
electric vehicles and automating heat pumps and water heating. 
 
 Recommendation: Add benefit of building weatherization including floor, ceiling, wall, 
attic  insulation; insulating pipes; weatherstripping alongside energy efficiency measures. 
 
Weatherization can improve the ability of buildings to provide safe shelter year-round 
but especially during extreme temperatures, power outages, and especially during power 
outages that occur at extreme temperatures. Properly weatherizing a building with 
improvements such as floor, ceiling, wall, attic insulation; insulating pipes; 
weatherstripping alongside energy efficiency measures can reduce the electricity needed 
to keep a building safe when there is power and maintain safe temperatures if the power 
goes out. However, many Texas homes are not properly weatherized, meaning the 
building envelope releases heat to the environment in winter or allows heat inside in 
summer. Overcompensating for this leakiness by increasing heating or cooling leads to 
energy waste and high energy bills. If buildings lose power, they quickly become 
uncomfortable and eventually unsafe. 
 
Typical weatherization changes might include: 

• Adding floor, ceiling, wall, attic, and pipe insulation, 
• Upgrading windows and doors for efficiency, 
• Sealing air leaks, 
• Updating the heating and air conditioning system, and 
• Energy efficiency upgrades 

 
Weatherization programs target residences of low-income individuals. The Texas weatherization 
program is administered by the Texas Department of Housing and Community Affairs with 
funding from the Department of Energy’s Weatherization Assistance Program and the 
Department of Housing and Urban Development’s Low-Income Home Energy Assistance 
Program. Additional funding might be supplied by the energy utility. 
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Residents who do not qualify for weatherization can make their own changes by beginning with 
a home energy audit. A professional home energy audit will analyze previous energy bills; 
inspect for insulation, hazards, and air or water leaks; evaluate health and safety 
concerns; and develop a home energy report. Residents can conduct their own home 
energy audit using the U.S. DOE Do-It-Yourself guide. 
 
 
Smart Grid 85 

Recommendation: Update to 2022 smart technologies and use of Smart Meter Texas, 
as well as use of smart technologies for grid resilience 

 
Smart Meter Texas is a website endorsed by The Public Utility Commission of Texas in which 
customers served by the competitive electricity market can access and review their electricity 
use data. Understanding your electricity use can help residents better manage it and save 
energy and money at home. The following graphic shows how to sign up for Smart Meter Texas. 
 

 
Figure 30: Figure showing the process for signing up for Smart Meter Texas. 

 
Cyber Security 100 
Plug-In Hybrid Electric Vehicles 126 
 Recommendation: remove this section and replace with electric vehicles 
 
Approximately 134,000 electric vehicles (EVs) were registered in Texas by mid-2022, about 1% of 
vehicles registered in Texas [42]. About 74% were battery electric (BEV), and 26% were plug-in 
hybrid EVs. Travis County leads vehicle registrations, as shown in the figure below. Some utilities 
such as CPS Energy, Austin Energy, Entergy, Southwestern Electric Power Company, and Denton 
Municipal Electric have rebate programs for EVs. Since 2020, the number of EVs has almost 
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tripled, and, by 2028, ERCOT estimates there will be about 1 million EVs in Texas. In Q3 of 2021, 
EVs reached about 10.8% of global sales at 1.7 million units sold [43]. The EV market in the U.S. 
has been dominated by Tesla, including about 79% of EV sales in 2020 [44], and most EVs 
registered in Texas were manufactured by Tesla.  
 
 

 
Figure 31: Figures showing electric vehicle registrations by county [45]. 

 

 
Figure 32: Figure showing electric vehicles registered in Texas by manufacturer and model [45]. 

 
In a survey of electric vehicle perceptions, most respondents indicated prices and lack of 
charging stations as hurdles for EV adoption [46]. There are over 2,300 DC level 2 fast charging 
stations in Texas with over 5,600 electric vehicle supply equipment (EVSE) ports as of August 
2022 [47].  
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Net zero studies, Princeton Net Zero America and Williams et al., model a heavy reliance on EVs 
across all vehicle types. In high electrification scenarios, BEVs comprise 100% of light-duty 
vehicle sales between 2040 and 2050, reaching 90-97% of total stock by 2050. Charging 
infrastructure also rapidly expands alongside sales. In delayed electrification scenarios, BEVs 
comprise 85-90% of sales by 2050.  
 
Energy Efficiency 130 

Recommendation: update with recommended technologies, e.g. net-zero strategies 
such as more efficient building envelopes as well as space and water heating 
equipment.  

Net zero studies, Princeton’s Net Zero America and Williams et al., model electrification of end 
uses across sectors as a method of decarbonization and energy efficiency. In the transportation 
sector, battery electric vehicles dominate light-duty vehicles by 2050 while BEVs and hydrogen 
vehicles dominate medium- and heavy-duty vehicle stock by 2050. In the residential and 
commercial sector, electrification strategies include heat pumps for space and water heating 
and electric devices cooking. Heat pumps sales increase to 100% between 2030 and 2040 in 
both Princeton’s Net Zero America and Williams et al., reaching 95-100% of stock by 2050. 
 
In response to Winter Storm Uri, the American Council for an Energy Efficient Economy 
evaluated strategies that could increase Texas’s energy efficiency, reducing total electricity 
demand. ACEEE recommends that Texas utilities enact seven programs to achieve large peak 
demand savings in both summer and winter: 
• Program to replace electric furnaces with ENERGY STAR heat pumps 
• Attic insulation and sealing incentive program 
• Smart thermostat incentive program 
• Heat pump water heaters incentive program 
• Central air conditioner demand response program with smart thermostat control 
• Water heater demand response program 
• Electric vehicle managed charging program 
 

Recommendation: Put Texas in context of other states’ energy efficiency policy and 
efforts. 
In 2011, Texas adopted SB 1125, the first statewide energy efficiency goal in the U.S., requiring 
utilities to save 0.4% of each company’s peak demand. However, the standard has not been 
updated since and, in 2018, net savings was 0.19% compared to the average 0.75% of electricity 
retail sales [48]. The ACEEE 2020 State Energy Efficiency Scorecard ranks Texas as 38th in energy 
efficiency savings and 36th in energy efficiency spending as a percent of utility revenues [48]. 
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Federal Issues 143 
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RAILROAD COMMISSION SECTION 147 
 Recommendation: include interconnectedness of electricity and gas 
As per recommendations from FERC (the Federal Energy Regulatory Commission) and PUCT 
(Public Utilities Commission of Texas), analyzing the interdependencies of power and gas would 
be valuable for reliability. These interdependencies include the ways by which the gas system 
depends on electricity (for compressors, separations, liquids management, anti-freeze 
equipment, etc.) and the ways by which the power sector depends on gas (for boilers, gas 
turbines, combined cycle systems, and reciprocating engines). Identifying these connections to 
prevent cascading failures is a key recommendation from FERC as well as other grid experts 
after winter storm events in 1989, 2011 and 2021. In particular, freeze-offs in the gas system in 
winter events caused derates or loss of capacity at gas-fueled power plants and FERC 
recommends winterizing the gas system. In addition, power outages (because of errors or 
because gas operators signed up for interruptible power supply) disabled operation of the gas 
system.  Winterizing the power sector, prohibiting critical gas infrastructure from signing up for 
interruptible power supply contracts, identifying circuits that include critical gas infrastructure, 
and winterizing the gas system are all assurance steps worthy of inclusion. 
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Appendix A 
This appendix includes more figures from each of the scenarios in the grid modeling analysis. 
 

 
Figure 33: Figure showing the total capacity for various generation types in the ERCOT grid in the BASE scenario assuming 
Today's weather. 

 
Figure 34: Figure showing the amount of energy generated by fuel type in the ERCOT grid from 2020 (actual) to 2050 in the BASE 
scenario assuming Today's weather. 
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Figure 35: Figure showing the total capacity for various generation types in the ERCOT grid in the BASE scenario assuming SSP1-
2.6 weather. 

 
Figure 36: Figure showing the amount of energy generated by fuel type in the ERCOT grid from 2020 (actual) to 2050 in the BASE 
scenario assuming SSP1-2.6 weather. 
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Figure 37: Figure showing the total capacity for various generation types in the ERCOT grid in the BASE scenario assuming SSP2-
4.5 weather. 

 
Figure 38: Figure showing the amount of energy generated by fuel type in the ERCOT grid from 2020 (actual) to 2050 in the BASE 
scenario assuming SSP2-4.5 weather. 
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Figure 39: Figure showing the total capacity for various generation types in the ERCOT grid in the BASE scenario assuming SPP3-
7.0 weather. 

 
Figure 40: Figure showing the amount of energy generated by fuel type in the ERCOT grid from 2020 (actual) to 2050 in the BASE 
scenario assuming SPP3-7.0 weather. 



 

Energy Efficiency & Resilience in Extreme Weather Events 66 

 
Figure 41: Figure showing the total capacity for various generation types in the ERCOT grid in the BASE scenario assuming SSP5-
8.5 weather. 

 
Figure 42: Figure showing the amount of energy generated by fuel type in the ERCOT grid from 2020 (actual) to 2050 in the BASE 
scenario assuming SSP5-8.5 weather. 
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Figure 43: Figure showing the total capacity for various generation types in the ERCOT grid in the EF scenario assuming Today's 
weather. 

 
Figure 44: Figure showing the amount of energy generated by fuel type in the ERCOT grid from 2020 (actual) to 2050 in the EF 
scenario assuming Today's weather. 
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Figure 45: Figure showing the total capacity for various generation types in the ERCOT grid in the EF scenario assuming SSP1-2.6 
weather. 

 
Figure 46: Figure showing the amount of energy generated by fuel type in the ERCOT grid from 2020 (actual) to 2050 in the EF 
scenario assuming SSP1-2.6 weather. 
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Figure 47: Figure showing the total capacity for various generation types in the ERCOT grid in the EF scenario assuming SSP2-4.5 
weather. 

 
Figure 48: Figure showing the amount of energy generated by fuel type in the ERCOT grid from 2020 (actual) to 2050 in the EF 
scenario assuming SSP2-4.5 weather. 
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Figure 49: Figure showing the total capacity for various generation types in the ERCOT grid in the EF scenario assuming SPP3-7.0 
weather. 

 
Figure 50: Figure showing the amount of energy generated by fuel type in the ERCOT grid from 2020 (actual) to 2050 in the EF 
scenario assuming SPP3-7.0 weather. 
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Figure 51: Figure showing the total capacity for various generation types in the ERCOT grid in the EF scenario assuming SSP5-8.5 
weather. 

 
Figure 52: Figure showing the amount of energy generated by fuel type in the ERCOT grid from 2020 (actual) to 2050 in the EF 
scenario assuming SSP5-8.5 weather. 
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Figure 53: Figure showing the total capacity for various generation types in the ERCOT grid in the EF + ASHP scenario assuming 
Today's weather. 

 
Figure 54: Figure showing the amount of energy generated by fuel type in the ERCOT grid from 2020 (actual) to 2050 in the EF + 
ASHP scenario assuming Today's weather. 
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Figure 55: Figure showing the total capacity for various generation types in the ERCOT grid in the EF + ASHP scenario assuming 
SSP1-2.6 weather. 

 
Figure 56: Figure showing the amount of energy generated by fuel type in the ERCOT grid from 2020 (actual) to 2050 in the EF + 
ASHP scenario assuming SSP1-2.6 weather. 
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Figure 57: Figure showing the total capacity for various generation types in the ERCOT grid in the EF + ASHP scenario assuming 
SSP2-4.5 weather. 

 
Figure 58: Figure showing the amount of energy generated by fuel type in the ERCOT grid from 2020 (actual) to 2050 in the EF + 
ASHP scenario assuming SSP2-4.5 weather. 
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Figure 59: Figure showing the total capacity for various generation types in the ERCOT grid in the EF + ASHP scenario assuming 
SPP3-7.0 weather. 

 
Figure 60: Figure showing the amount of energy generated by fuel type in the ERCOT grid from 2020 (actual) to 2050 in the EF + 
ASHP scenario assuming SPP3-7.0 weather. 
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Figure 61: Figure showing the total capacity for various generation types in the ERCOT grid in the EF + ASHP scenario assuming 
SSP5-8.5 weather. 

 
Figure 62: Figure showing the amount of energy generated by fuel type in the ERCOT grid from 2020 (actual) to 2050 in the EF + 
ASHP scenario assuming SSP5-8.5 weather. 
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Figure 63: Figure showing the total capacity for various generation types in the ERCOT grid in the EF + ASHP + DHC scenario 
assuming Today's weather. 

 
Figure 64: Figure showing the amount of energy generated by fuel type in the ERCOT grid from 2020 (actual) to 2050 in the EF + 
ASHP + DHC scenario assuming Today's weather. 
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Figure 65: Figure showing the total capacity for various generation types in the ERCOT grid in the EF + ASHP + DHC scenario 
assuming SSP1-2.6 weather. 

 
Figure 66: Figure showing the amount of energy generated by fuel type in the ERCOT grid from 2020 (actual) to 2050 in the EF + 
ASHP + DHC scenario assuming SSP1-2.6 weather. 
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Figure 67: Figure showing the total capacity for various generation types in the ERCOT grid in the EF + ASHP + DHC scenario 
assuming SSP2-4.5 weather. 

 
Figure 68: Figure showing the amount of energy generated by fuel type in the ERCOT grid from 2020 (actual) to 2050 in the EF + 
ASHP + DHC scenario assuming SSP2-4.5 weather. 
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Figure 69: Figure showing the total capacity for various generation types in the ERCOT grid in the EF + ASHP + DHC scenario 
assuming SPP3-7.0 weather. 

 
Figure 70: Figure showing the amount of energy generated by fuel type in the ERCOT grid from 2020 (actual) to 2050 in the EF + 
ASHP + DHC scenario assuming SPP3-7.0 weather. 
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Figure 71: Figure showing the total capacity for various generation types in the ERCOT grid in the EF + ASHP + DHC scenario 
assuming SSP5-8.5 weather. 

 
Figure 72: Figure showing the amount of energy generated by fuel type in the ERCOT grid from 2020 (actual) to 2050 in the EF + 
ASHP + DHC scenario assuming SSP5-8.5 weather. 
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Figure 73: Figure showing the total capacity for various generation types in the ERCOT grid in the EF + ASHP + COMM scenario 
assuming Today's weather. 

 
Figure 74: Figure showing the amount of energy generated by fuel type in the ERCOT grid from 2020 (actual) to 2050 in the EF + 
ASHP + COMM scenario assuming Today's weather. 
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Figure 75: Figure showing the total capacity for various generation types in the ERCOT grid in the EF + ASHP + COMM scenario 
assuming SSP1-2.6 weather. 

 
Figure 76: Figure showing the amount of energy generated by fuel type in the ERCOT grid from 2020 (actual) to 2050 in the EF + 
ASHP + COMM scenario assuming SSP1-2.6 weather. 
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Figure 77: Figure showing the total capacity for various generation types in the ERCOT grid in the EF + ASHP + COMM scenario 
assuming SSP2-4.5 weather. 

 
Figure 78: Figure showing the amount of energy generated by fuel type in the ERCOT grid from 2020 (actual) to 2050 in the EF + 
ASHP + COMM scenario assuming SSP2-4.5 weather. 
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Figure 79: Figure showing the total capacity for various generation types in the ERCOT grid in the EF + ASHP + COMM scenario 
assuming SPP3-7.0 weather. 

 
Figure 80: Figure showing the amount of energy generated by fuel type in the ERCOT grid from 2020 (actual) to 2050 in the EF + 
ASHP + COMM scenario assuming SPP3-7.0 weather. 
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Figure 81: Figure showing the total capacity for various generation types in the ERCOT grid in the EF + ASHP + COMM scenario 
assuming SSP5-8.5 weather. 

 
Figure 82: Figure showing the amount of energy generated by fuel type in the ERCOT grid from 2020 (actual) to 2050 in the EF + 
ASHP + COMM scenario assuming SSP5-8.5 weather. 
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Figure 83: Figure showing the total capacity for various generation types in the ERCOT grid in the EF + ASHP + COMM + DR 
scenario assuming Today's weather. 

 
Figure 84: Figure showing the amount of energy generated by fuel type in the ERCOT grid from 2020 (actual) to 2050 in the EF + 
ASHP + COMM + DR scenario assuming Today's weather. 
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Figure 85: Figure showing the total capacity for various generation types in the ERCOT grid in the EF + ASHP + COMM + DR 
scenario assuming SSP1-2.6 weather. 

 
Figure 86: Figure showing the amount of energy generated by fuel type in the ERCOT grid from 2020 (actual) to 2050 in the EF + 
ASHP + COMM + DR scenario assuming SSP1-2.6 weather. 
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Figure 87: Figure showing the total capacity for various generation types in the ERCOT grid grid in the EF + ASHP + COMM + DR 
scenario assuming SSP2-4.5 weather. 

 
Figure 88: Figure showing the amount of energy generated by fuel type in the ERCOT grid from 2020 (actual) to 2050 in the EF + 
ASHP + COMM + DR scenario assuming SSP2-4.5 weather. 
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Figure 89: Figure showing the total capacity for various generation types in the ERCOT grid in the EF + ASHP + COMM + DR 
scenario assuming SPP3-7.0 weather. 

 
Figure 90: Figure showing the amount of energy generated by fuel type in the ERCOT grid from 2020 (actual) to 2050 in the EF + 
ASHP + COMM + DR scenario assuming SPP3-7.0 weather. 
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Figure 91: Figure showing the total capacity for various generation types in the ERCOT grid in the EF + ASHP + COMM + DR 
scenario assuming SSP5-8.5 weather. 

 
Figure 92: Figure showing the amount of energy generated by fuel type in the ERCOT grid from 2020 (actual) to 2050 in the EF + 
ASHP + COMM + DR scenario assuming SSP5-8.5 weather. 
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Appendix B  
 
Sample Texas Energy Utility Energy Efficiency Programs 
CenterPoint Energy  
CenterPoint Energy offers a number of residential energy efficiency programs which include: 
the Coolsaver A/C tune-up that is offered to customers to improve the efficiency of their air 
conditioning units by up to 27%. A Coolsaver qualified technician also identifies ways to 
improve the efficiency of the air conditioner (A/C) and implement any recommended 
improvements. This program is available for use every 5 years. The other programs are 
upgrading HVAC systems with potential rebates, investing in a smart thermostat (installation of 
ENERGY STAR® certified smart thermostats leads to a $50 instant rebate), insulation 
assessments, and discounted LED lighting [49]. 
 
CenterPoint Energy’s agencies in action program provides whole house energy weatherization 
upgrades to income-eligible housing. To qualify for this program, the home must be at least 16 
years old and the annual household income has to meet the low-income guidelines or receive 
benefits from a public assistance program [50]. 
 
The Residential Standard Offer Program (RSOP) and Hard-To-Reach Standard Offer Program 
(HTR) are other programs offered by CenterPoint energy aimed at achieving cost effective 
reduction in peak demand on the electric grid. These programs offer incentives to a wide range 
of contractors, service companies, community agencies and other organizations for the 
installation of energy efficiency retrofit projects within the CenterPoint Energy electric territory. 
The HTR program specifically targets households with incomes at or below 200% of the federal 
poverty guidelines [51]. 
 
AEP Texas  
AEP Texas also offers the Coolsaver A/C tune-up program as well as the Hard-to-Reach Standard 
Offer Program which was specifically developed for households with incomes at or below 200% 
of the federal poverty guidelines or who participate in approved government programs. This 
specific program helps residential customers reduce energy consumption through the 
installation of energy efficiency measures in their homes. These measures include home 
envelope, interior energy usage, and air conditioning system measures. The Targeted Low-
Income Program is another program designed to cost-effectively reduce energy costs and 
energy consumption for AEP Texas’ low-income customers. Not-for-profit community agencies 
identify eligible customers, conduct home assessments, and arrange for the installation of 
weatherization and energy efficiency measures in households with incomes in the stipulated 
federal poverty guidelines range. Other programs offered by AEP that improve grid resilience 
are: the SMART SourceSM Solar PV Program, which is designed to help customers meet a portion 
of their energy needs with solar electric systems by offsetting the initial cost of a solar energy 
system installation and AEP’s Residential Standard Offer Program, which provides incentives to 
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participating contractors for the installation of eligible energy efficiency services and products 
in residential customers’ homes [52]. 
 
Oncor  
Oncor offers incentives for projects like home energy efficiency insulation, low-income 
weatherization, and solar photovoltaic systems for households.  The incentives for residential 
solar photovoltaic systems are dependent on the size, azimuth and other factors of the installed 
system. Homeowners need to install solar photovoltaic systems with an energy storage back up 
system to qualify for these incentives. Oncor’s New Homes Program provides incentives to 
homebuilders who construct ENERGY STAR® certified or Zero Energy Ready Homes. These 
incentives help achieve customer energy and cost savings [53]. 
 
CPS Energy  
CPS Energy’s SaveNow - Save for Tomorrow Energy Plan (STEP) was launched in 2009 to reduce 
the community’s energy demand by 771 Megawatts (MW) by 2020. This goal was exceeded one 
year ahead of time and under budget. In 2019, STEP saved CPS customers enough energy to 
power over 104,000 homes and provided 680 annual jobs. There are a number of rebates 
included in STEP such as: Wi-Fi thermostat rewards, home energy rebates for central air, heat 
and pool pumps, attic insulation, window A/C units, and solar PV [54]. 
 
TNMP  
TNMP offers both a high-performance homes program and Residential and Hard-to-Reach 
Standard Offer Programs (Res/HTR SOPs). The former provides financial incentives for 
constructing energy-efficient homes that meet current program guidelines. It also promotes the 
construction and certification of high-performance and ENERGY STAR® certified new homes. 
The Res/HTR SOPs were developed by TNMP to provide incentives to suppliers of energy 
services. The primary objective of these programs is to achieve cost-effective reduction in 
summer peak demand, winter peak demand, and annual energy consumption for TNMP’s 
residential and hard-to-reach customers. Additionally, the TNMP low-income weatherization 
program provides incentives for the installation of energy efficiency upgrades in the single-
family homes of low-income customers [55]. 
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Appendix C  
 
Utility Survey Responses 
There were 19 survey responses. Most respondents (15) were Transmission & Distribution 
utilities. An additional four respondents were from a municipal utility, monopoly, or fully 
integrated regulated utility. 
 

 
 
Outage Events 
Utility professionals were asked about their experiences with power outages and Winter Storm 
Uri. Many agree that their company was influenced by major outages, including Winter Storm 
Uri. Eight of nineteen respondents agree or strongly agree that a major outage event influenced 
their company’s approach to the role energy efficiency can play in home resilience. The same 
number of respondents indicated Winter Storm Uri influenced their company’s approach to 
energy efficiency. Eight of nineteen respondents indicated a neutral response to the idea that 
their company was influenced by a major outage event, and six respondents indicated influence 
from Winter Storm Uri. Three respondents disagree or strongly disagree that their company’s 
approach to energy efficiency was influenced by a major power outage, and five respondents 
disagree or strongly disagree that their company’s approach was influenced by Winter Storm 
Uri. 
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Home Resilience 
Utility professionals were asked about measures to improve home resilience. The most 
recommended strategy is insulation. A majority of respondents recommend improving the 
building envelope, replacing windows with energy efficient windows, and insulating pipes. 
While windows are a priority, fewer respondents recommend solar screens (6) or window tint 
(2). Additionally, a majority of respondents recommend adding onsite power, such as a natural 
gas generator and/or solar+storage to the home; fewer respondents recommend a gasoline or 
propane generator. Smart thermostats were not highly recommended by utility respondents. 
While smart thermostats are good for energy efficiency, program professionals do not see them 
as providing added resilience. 
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Under existing regulatory and programmatic guidelines, a majority of respondents recommend 
prioritizing ceiling, wall, and pipe insulation and energy efficient windows. Fewer respondents 
recommend solar screens (8) and window tint (1). Some respondents recommend solar or 
storage with fewer respondents recommending both solar and storage. 
 

 
Utility professionals were asked about limitations to implementing home resilience measures. 
Most respondents indicated that the cost-effectiveness methodology limits their ability to 
implement measures that improve home resilience. Two respondents elaborated on their 
responses. One indicated residential customers want air infiltration but can no longer receive it 
due to changes to the TRM and duct efficiency savings. Another respondent indicated if 
resilience measures do not show energy savings on paper, incentive dollars cannot be used. 
Additionally, most respondents indicated material availability limits their ability to implement 
measures. One third of respondents indicated homeowner interest limits the ability to 
implement measures. 
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Respondents were asked about how they would change existing energy efficiency programs or 
rules to allow for more measures that could make homes resilient. Responses varied with no 
majority reply. However, a plurality of respondents recommended providing comprehensive 
energy savings, including both natural gas and electricity. Four respondents agreed that 
increasing spending per house and changing the current cost-effectiveness test would be 
needed to allow greater inclusion of resilient home measures. 
 

 
 
Utility professionals were asked their sentiment on the statement “Utilities should play a larger 
role in ensuring a weatherized home is not only more efficient but is also more resilient.” Most 
respondents agree or strongly agree with this idea. Only two respondents disagreed, both from 
T&D utilities. 
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Cost Effectiveness Tests 
A variety of cost-effectiveness tests are utilized by utilities to administer weatherization and 
efficiency or conservation measures. Utility professionals were asked which tests they use to 
qualify energy conservation measures. Utilities rely on different tests. Two utility respondents 
were unaware of the cost effectiveness tests provided. No one test is used by a majority of 
respondents, but a plurality of respondents use the Program Administrator Cost Test. When 
asked what cost effectiveness test would better support more resilience-related measures a 
plurality of respondents prefers the Total Resource Cost Test. 
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Utility Incentives 
Respondents from utilities that do not offer a solar incentive indicated that the cost of solar is 
too high or the payback too long even with an incentive. One respondent indicated that solar is 
seen as generation, but they are not able to own generating assets. Another respondent 
indicated that residential solar is a conflict of interest for the utility. 
Respondents from utilities that do offer solar incentives indicate that customers are interested 
in the incentive (3), that it is cost effective for the utility (1), and that it provides energy savings 
(1). Municipal utilities indicated renewable incentives fit their priorities for renewable energy 
(2).  

 
 
No utilities offer incentives that encourage battery storage. Responses indicated some utilities 
might see batteries as an emerging market, too young or too expensive for their incentives to 
be cost-effective. One response questioned how savings could be claimed. Two respondents 
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indicated regulations prevented assistance for battery storage as it is considered generation, 
but they are not able to own generating assets. Two other respondents indicated approval for 
battery incentives may begin soon. 
 
Utilities and Policies or Regulation 
Utility professionals were asked about the influence of policy, regulation, and legislation on use 
of energy efficiency or weatherization programs for home resilience. Most respondents agree 
or strongly agree that policies or regulations limit the inclusion of measures that would improve 
the resilience of a home; disagree or strongly disagree that their organization is able to 
incorporate more resilience measures without regulatory or program changes; and agree or 
strongly agree that legislative, regulatory, or program changes are needed to increase use of 
resilience measures in utility energy efficiency programs. 
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Appendix D 
 

1. General Model Summary: Capacity Expansion Modeling in Switch 
 

The analysis for this project is completed using the capacity expansion model called, “SWITCH” 
[56].  
 
A capacity expansion model is an optimization program that makes decisions about the 
operation and construction of power plants, transmission lines, and other electric grid assets. It 
accomplishes this at two different time scales: 

× Short Time Scale: the model dispatches the power plant fleet so that electricity 
generation and electricity demand are balanced for each hour of the simulation. 

× Long Time Scale: the model builds new power plant capacity to 1) provide enough 
power plants so that electricity generation and demand can be balanced in future years, 
and 2) enable the composition of the power plant fleet to evolve in ways that minimize 
the total system cost.  

 
The model solves for the Short and Long Time Scales simultaneously to meet the modeling 
objective. The objective for this model is to minimize the net present value of all investment 
and operation costs. Thus, the model will 

× dispatch power plants in the Short Time Scale so that the least expensive power plants 
are turned on first, to balance the hourly generation and demand at the lowest possible 
cost, and 

× build new power plants if the upfront investment cost of constructing those power 
plants will reduce the total net present value by reducing the cost of the Short Time 
Scale power plant operation during future time periods.  

 
This objective is subject to a number of constraints and input variables. For example, power 
plant operational characteristics, fuel prices, power plant construction costs, renewable energy 
generation profiles, transmission capacity, and many other variables described in the following 
sections constrain the model’s solution. 
 
“Switch” is a unique grid planning model that is built using capacity expansion modeling theory. 
Switch is developed and maintained by Professor Matthias Fripp at the University of Hawaii and 
has been in development since 2012. It is an open source model built on the Python 
programming language. For more details about the model, its validation, calibration, and 
equations, see [56].  
 
 

2. Time Series 
Because a capacity expansion model operates at both Short and Long Time Scales, it must use 
simplified time series so that the model is tractable and can be solved. For example, a capacity 
expansion model that solves a 2020-2050 scenario will not solve for all 8,760 hours of all 30 
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analysis years. Instead, it will use a few representative days for each year, and a few 
representative years for the whole 30-year time scope.  
 
In this model, we use seven representative days and six representative years. 
 

2.1. Representative Days 
This model uses 7, 24-hour periods to represent the annual electricity market. Those 24-hour 
periods include: 

× Summer and winter peaks:  we use the 24-hour profile of the day with the greatest 
instance of hourly system demand in the summer and winter. These peak time series 
are scaled up to represent 6 of 365 days for each model year each. 

× Winter average: we use the average 24-hour profile of February to represent 28 of 365 
days for each model year. 

× Summer average: we use the average 24-hour profile of November, December, and 
January to represent 30 of 365 days for each model year. 

× Winter season average: we use the average 24-hour profile of February to represent 89 
of 365 days for each model year. 

× Summer season average: we use the average 24-hour profile of May, June, August, and 
September to represent 117 of 365 days for each model year. 

× Summer season average: we use the average 24-hour profile of May, June, August, and 
September to represent 117 of 365 days for each model year. 

× Shoulder season average:  
 

2.2. Representative Years 
The model simulates these seven representative days a total of six times each. Each of the four 
time periods represents a 5-year span: 2020-2025, 2025-2030, 2030-2035, 2035-2040, 2040-
2045, and 2045-2050.   
 
For each of these 5-year time periods, we average the input values across those years. For 
example, the natural gas price for the 2020-2025 time period equals the average of the 2020, 
2021, 2022, 2023, and 2024 forecasted natural gas prices. 
 

3. Generator Data 
Our model represents each individual power plant in the ERCOT system. To parameterize each 
of these power plants, we compile data from a variety of sources as outlined below.  
 

3.1. ERCOT Capacity Demand and Reserve Report, 2018 [57] 
Twice a year, ERCOT releases a report that includes some data for all of the operating 
generators in the ERCOT market. We use this report to gather data on each existing 
generator’s: 

× capacity, 
× construction year, and 
× county. 
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3.2. Emissions & Generation Resource Integrated Database (eGRID), 2018 [58] 

eGRID is maintained by the EPA and contains information about the existing U.S. power plant 
fleet. We use it to gather data on each ERCOT generator’s:  

× fuel type, and 
× technology type. 

 
3.3. Annual Technology Baseline (ATB), 2019 [59] 

The ATB is published annually by NREL and contains a set of assumptions and futures to inform 
electric sector analyses in the U.S. The data provides operational and cost characteristics for 
different types of generators projected from 2018-2050. We use it to gather data for each 
generator’s: 

× scheduled outage rates,  
× forced outage rates, and 
× fixed operation and maintenance cost. 

 
We also use the ATB to provide the following data for characterizing new generators: 

× capital cost of construction, 
× fixed operation and maintenance cost, 
× heat rate, and 
× roundtrip efficiency for battery charge/discharge cycles. 

 
3.4. Garrison Dissertation, 2014 [60] 

In addition to the sources above, which are used broadly for modeling the U.S. power sector 
across many different regions, we also refer to the dissertation of Dr. Jared Garrison, which 
contains data compiled specifically for modeling the ERCOT region. Those data include the 
following. 

3.4.1. Heat Rates 
Heat rates for existing generators are calculated by diving each generator’s monthly fuel 
consumption by its monthly electricity generation. These data come from the US EIA 923 
database. We average these monthly heat rates over multiple years to approximate each 
generator’s full load heat rate.   

3.4.2. Startup Costs 
Startup costs for existing and new generators are based on data from the Power Plant Cycling 
Costs report. This report lists startup cost for cold, warm, and hot startups. For the ERCOT 
power plants, the startup costs for each generator type were selected based on whether that 
generator type tends to startup from warm or cold conditions. 

3.4.3. Min Up and Down Time, Min Output, and Variable Operation & Maintenance Costs 
These characteristics come from the assumptions that ERCOT uses for the capacity expansion 
model used to create the ERCOT Long Term System Assessment report. Based on conversations 
with different stakeholders, Garrison updated some of these original data for a few of the 
generator types.  
 



 

Energy Efficiency & Resilience in Extreme Weather Events 105 

3.5. Coal Retirements 
Based on age, the majority of coal plants are expected to retire in Texas by 2035, we force coal 
retirements for any coal plants that have been operating for 43 years or longer. This 
requirement has the following impact on overall coal capacity: 

• 2018:   13.1 GW 
• 2020-2025:  11.5 GW 
• 2025-2030:   5.5 GW 
• 2030-2035:   3.3 GW 
• 2035-2040:   3.0 GW 

 
 

4. Wind and Solar 
4.1. Profiles 

We use hourly wind and solar generation profiles for hundreds of sites around ERCOT. These 
generation profiles were developed by AWS TruePower for ERCOT and are available for public 
download [61].  
 
The hourly profiles are simulated using historical weather data. A generation profile is created 
for each existing wind and solar site in ERCOT along with many potential sites where wind and 
solar capacity have not yet been installed.  
 
For developing future wind capacity, we let the model expand the capacity of simulated sites 
(modeled at a hub height of 90m) and existing sites with hub heights of 80m or greater. For 
existing sites with hub heights below 80m, we use their profiles to represent existing wind 
generation resources available for dispatch, but do not let the model expand their capacity. For 
counties without existing or simulated wind generation, we average the profiles of sites with 
similar wind resources in neighboring counties.  
 
For developing future solar capacity, we let the model expand the capacity of the simulated 
sites. Texas solar resources [62] generally improve as one travels west. We observe this trend in 
the capacity factors of the simulated solar sites, but not consistently in the capacity factors of 
the existing solar sites. Thus, we use the profiles of existing sites to represent existing solar 
capacity resources available for dispatch, but do not let the model expand their capacity.  
 

4.2. Site Limits for Wind and Solar Capacity 
Since wind and solar plants require a significant amount of real estate, we limit the amount of 
wind and solar development that the model can build in each Texas county.  
 
For solar, we assume single-axis tracking arrays built at a density of 30 MW/km2 (77.7 MW/mi2). 
[63]  
 
For wind, we use the appendix data from [64] to divide the total Texas wind capacity by the 
total developed land area of that wind capacity to get a density of 7.14 MW/mi2.  
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We then multiply these development densities by the square mileage of land in each county 
that is available for development17. The result is the maximum amount (MW) of wind and solar 
capacity that could be built in the developable land in each county.  
 
The wind limit is, on average, 6.5 GW per county. But that capacity can only be realized if all of 
the county’s available land area has suitable wind resources. However, in most counties, the 
wind resource quality varies across the county’s geography. To account for this, we use data 
from [65] to estimate the amount of land in each county that has wind resources with wind 
speeds of 7.0-7.5, 7.5-8.0, and 8.0+ m/s. We use those estimates to cap the amount of capacity 
that each wind site may develop, depending on its capacity factor. 
 
The solar limit is, on average, 70.4 GW per county. In practice, this solar limit never constrains 
the model. Thus, we assume that, because of its density, solar development has little impact on 
wind development—i.e., if a county builds many GW of solar capacity, this requires a relatively 
small amount of land and we assume that it does not meaningfully diminish the county’s wind 
capacity limit. 
 

4.3. Annual Limits for Wind and Solar Capacity Growth 
Wind and solar development are also limited by materials supply chains, manufacturing 
capabilities, and construction capabilities. To capture this, we impose an annual limit on how 
much wind and solar can be built in the model.  
 
For both wind and solar, we establish a baseline limit on GW/year that can be installed. Then, 
assuming that these limitations will increase with GDP, we scale the installation limits up 
according to the forecasted Texas GDP growth through 2050 [66]. 
 
For the baseline wind limit, we take data on annual wind development in Texas from 2009-2019 
[67] [68]. We take the average of these numbers—1.45 GW/year—as the baseline for the wind 
development limit. 
 
We assumed the same deployment rate for utility-scale solar. However, we also assumed that 
all projects that have current interconnection agreements in the EROCT GIS system would be 
built on-time.   
 

4.4. Land Lease Rates for Wind and Solar 
The fixed operating cost of each wind and solar site varies depending on which county it is built 
in. To accomplish this, we first compile a lease rates for rangeland, native pasture, and hunting 
leases in 33 Texas regions [69]. Then we normalize those lease rates, multiply them by wind and 
solar lease costs from [70], and assign them to the counties contained in each region. Note that 
wind land lease costs vary from 1,100 to 24,500 $/MW-year with an average of 8,960 and solar 
land lease costs vary from 630 to 14,400 $/MW-year with an average of 8,960. 
 

 
17 Personal communication with the University of Texas at Austin Bureau of Economic Geology. 
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We then use these land costs to adjust the fixed operation and maintenance costs from section 
3.3 by: 

• for wind sites: subtracting the average wind land lease cost from the wind FOM. Then 
adding back the county-specific wind land lease cost. 

• for solar sites: because the ATB does not include solar land lease costs in its solar FOM, 
we simply add the county-specific solar land lease cost to the ATB FOM. 

 
4.5. Tax Credits 

 
5. Transmission 

As electricity travels from region to region it incurs losses and must not exceed the capacity of 
the transmission lines. The model can increase the capacity of the existing transmission lines by 
paying the capital cost to build new lines.  
 

5.1. Losses 
We assume losses of 1% per 100 miles of transmission. This aligns with the assumption used by 
the National Renewable Energy Laboratory’s ReEDS model [71]—a capacity expansion model of 
the continental United States.  

 
5.2. Regions and Capacities 

The model comprises 16 regions with transmission capacity between many of the regions’ 
borders. The regions and transmission locations were determined using geographic 
transmission data from the Department of Homeland Security [72].  
 

5.3. Construction Cost 
Transmission construction costs are based on data from the Competitive Renewable Energy 
Zones (CREZ) project—a large-scale transmission construction project carried out in ERCOT 
from 2008-2013. We use a transmission construction cost of about 2300 $/MW-mile (1,430 
$/MW-km) as described in [73]. 
 

6. Fuel Prices 
Fuel price data come from the EIA’s 2020 Annual Energy Outlook (AEO) [74]. This report 
contains future projections out to 2050 of energy consumption, emissions, and fuel prices. We 
use the  

× forecasted AEO coal prices for our model’s subbituminous coal prices, 
× forecasted AEO coal prices plus 0.72 $/mmBtu for our model’s lignite coal prices, and 
× forecasted AEO natural gas prices for our model’s natural gas prices.  

The lignite prices are increased by 0.72 $/mmBtu so that the average of the forecasted 2020-
2030 prices equal the average of the historical 2015-2020 Texas lignite prices [75]. 

 
7. Financial 

The Switch model uses an interest rate and discount rate for various financial calculations. We 
assume a discount rate equal to a weighted average cost of capital (WACC) of 7.17% and an 
interest rate of 6.01%. These align with the assumptions of the NREL ATB [59]. 
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Appendix E  
This appendix includes one already published paper [6] for this project as well as another that 
has been submitted for publication. 
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Changing sensitivity to cold weather
in Texas power demand

Blake Shaffer,1,3,* Daniel Quintero,1 and Joshua Rhodes2

SUMMARY

We estimate the effect of heightened temperature sensitivity on electricity de-
mand in Texas during the February 2021 blackout event. Using 20 years of hourly
data, we estimate the relationship between temperature and electricity demand;
finding demand has become more responsive to cold temperatures over time.
This is consistent with the fact electric heating has similarly increased over the
past 20 years in Texas. We find during the February 2021 event, average elec-
tricity demand was 8% higher, and approximately 10,000 MW higher during
the peak hour, than it would have been had temperature sensitivity remained un-
changed at early 2000s levels. Our results highlight that Texas’s increased sensi-
tivity to cold weather extremes is not limited to the supply side, but the demand
side as well. These findings have implications to other regions that are seeking to
reduce carbon emissions through the electrification of heating.

INTRODUCTION

In February 2021, the extreme cold weather fromWinter Storm Uri strained the Electric Reliability Council of

Texas (ERCOT) power grid to the brink. Over the course of five days, roughly 12 million Texans were left in

the dark. In total, nearly 1,000 GWh of firm electric load was shed (not served) as rolling blackouts were

enacted to avoid a complete system-wide loss of power. The human health and safety toll was large,

with an official estimate of 246 people dying, unprotected in the cold, and ancillary infrastructure, such

as water systems, breaking down (Texas Department of State Health Services, 2021). The economic dam-

ages from the storm are expected to exceed $100 billion US dollars (Accuweather, 2021).

In the aftermath, much of the focus has been on the supply side of Texas’ power market. The question of

which fuel type was ‘‘most at fault’’ became politicized; conversations about the interdependence of elec-

tricity and natural gas systems, and the need to winterize both, echoed the same conversations from only

ten years ago, during the last ‘‘great freeze’’ in Texas; and ERCOT’s unique ‘‘energy-only’’ market design

was called into question as to whether it led to insufficient levels of reliability. All important questions

that will undoubtedly be studied and discussed for years to come.

Far less focus, however, has been placed on the demand side. What is clear is just how large electricity

demand in the region was, leading up to the blackout event. In ERCOT’s seasonal assessment of

resource adequacy for Winter 2020/21, the planned winter peak demand—the basis upon which

ERCOT determines whether they have sufficient capacity to meet demand—was 57,699 MW (ERCOT,

2020). An extreme peak load scenario was included in the assessment at 67,208 MW based on a repeat

of the 2011 cold weather event in the state. On Sunday February 14, a typically off-peak day, ERCOT set a

record peak winter load of 69,692 MW at 8p.m., with forecasts calling for a peak exceeding 76,000 MW

for the coming midweek cold snap, before load shed eventually negated such levels from occurring. In

terms of daily average load, Sunday February 14th 2021 was the highest daily average load in ERCOT

history (see Figure S1).

In this paper, we ask the question: Has electricity demand in Texas becomemore sensitive to cold weather?

And, if so, how much higher was electricity demand during the February event due to heightened temper-

ature sensitivity? We motivate this investigation by noting that over the past 15 years the share of Texan

households using electric heat has risen from 52% to 61% (U.S. Census Bureau, 2004; 2019). Given a higher

reliance on electricity for heating, it would be reasonable to expect Texas electricity demand to be more

sensitive to cold weather events today than in the past. Thus, at the cold temperatures observed in
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February 2021, even if not the most intensely cold on record (Doss-Gollin et al., 2021), the electrification of

heating stands to push electricity demand higher than would previously have been expected.

We answer this question using nearly 20 years of hourly historical weather and electric load data to es-

timate the temperature responsiveness of electricity demand across each of ERCOT’s eight weather

zones, and, importantly, how these temperature response functions have changed over time. In doing

so, we are able to calculate the increase in electricity demand during the cold temperatures observed

in February 2021 that is attributable to an increasingly cold-weather-responsive demand. We find height-

ened temperature responsiveness accounts for an average increase in overall ERCOT demand over the

outage period of roughly 8% (absent the load shed), and slightly more than 10,000 MW of additional load

during the peak hour event on the morning of February 16, than it would have been absent the increase

in cold-weather sensitivity. This is after controlling for annual trends, such as population and overall load

growth.

These findings highlight Texas’ changing sensitivity to cold weather events. The extreme events in 2021

were not only challenging for the supply side of power generation but also from additional temperature

sensitivity to cold weather resulting in greater demand for electricity than would have been the case

only a decade ago. We discuss implications to other regions seeing increased electrification of heating

as a pathway to net-zero emissions.

Several studies have examined the temperature responsiveness of electricity demand, but largely in the

context of increasing temperatures due to climate change (Isaac and van Vuuren, 2009; De Cian and

Wing, 2017; Wenz et al., 2017; Auffhammer et al., 2017). Others have considered the adaptive effect of

increased air conditioner penetration, leading to heightened responsiveness of electricity demand to

higher temperatures (Davis and Gertler, 2015; Rivers and Shaffer, 2020). There is comparatively very little

research on the effect of greater electrification of heating in terms of altering the temperature sensitivity

of power demand in the domain of cold temperatures. This analysis seeks to fill that knowledge gap.

RESULTS

Temperature response functions

We begin by estimating the relationship between temperature and electricity demand, conditioning on

other non-temperature factors of demand, as per (Equation 1) in the method details section (below). We

do so separately for each ERCOT weather zone, using data from 2002 through 2020. Data from 2021 are

excluded from the estimation because (a) we want to avoid the confounding effect of the load shed during

the outage event, and (b) the year fixed effect would be problematic given the partial year containing

below-average temperatures (i.e. winter period only). We plot the temperature response functions, for

each region, in Figure 1. These functions show the expected percentage difference in electricity demand

for a given prevailing temperature relative to 18.5�C (approx. 65 �F).

The temperature response functions exhibit their familiar U-shape, consistent with the existing literature,

highlighting that electricity demand increases as temperature deviates in both directions from a neutral

point, resulting in either heating or cooling load. The steepness of each side of the temperature response

function represents the sensitivity to cold and hot temperatures, respectively.

Next, we re-estimate temperature response functions by zone, but this time doing so using separate five-

year periods. This allows us to follow the evolution of temperature responsiveness over time. The results are

shown in Figure S2 in the supplemental information.

In two of the eight zones, namely the West and Far West, we see a flattening of the temperature response

functions over time. It appears load is becoming less sensitive to temperature in these two zones. This is

consistent with the continued growth in less temperature-sensitive electrified oil and gas development

in west Texas (ERCOT, 2018). A neutral result is observed in the North Zone, with little change over

time. Whereas, in the remaining five zones (North Central, Coast, South Central, South, and East), the tem-

perature response functions all steepen in the most recent period of estimation relative to the oldest

period, reflecting a heightened sensitivity to cold temperatures. These zones represent the bulk of

ERCOT’s load, or roughly 90% of the total, and thus increases in temperature sensitivity in these regions

overwhelmingly drive total ERCOT electricity demand.
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Projecting the effect of changing sensitivity to cold temperatures

We now use the estimated temperature response functions to answer the originally proposed question: by

how much greater was electric load during the February 2021 event due to heightened cold temperature

sensitivity? To do so requires extrapolating the estimated temperature response functions over a range of

temperatures outside the domain of temperatures used in the estimation process above.

Figure 2 plots the temperature response functions for one zone—the Coast Zone—over the domain of cold

temperatures (i.e. below 10�C), for the oldest (2002–2006) and newest (2017–2020) periods. From the figure,

we see that a linear approximation is a strong fit for the temperature response functions over this range of

temperatures, with demand differences measured in log points. Extrapolating this linear fit into the colder

temperatures observed in February 2021 allows us to calculate the additional electric load due to height-

ened temperature sensitivity. The linear assumption has been used by Auffhammer et al. (2017) and Rivers

and Shaffer (2020), among others, to extrapolate beyond the domain of estimated temperatures. In those

examples, it was for extrapolating to higher temperatures due to climate change. While certainly some

non-linearities could exist in the relationship beyond the currently estimated temperature domain, our

concern here is the difference between two temperature response functions, and thus it would be changes

in non-linearities over time that would be the confounding factor.

We repeat the analysis displayed in Figure 2 for all zones. As previously mentioned, in themajority of zones,

heightened temperature sensitivity results in more load than would have been the case with 2002–2006

sensitivity; whereas in a few zones, notably smaller ones, the opposite is true. Summing across all zones re-

sults in a clear and significant increase in load due to temperature sensitivity.

Figure 3 plots hourly total ERCOT load over the period of February 14–19, 2021. The actual ERCOT forecast

load is represented by the solid line. This is the load forecast by ERCOT had there not been firm load shed

North Central (DFW) South (Corpus Christi) South Central (Austin) West (Abilene)

Coast (Houston) East (Tyler) Far West (Midland) North (Wichita Falls)
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Figure 1. Temperature response functions by ERCOT weather zone; all years

Plotted are the estimated regression coefficients representing percentage difference in demand for each respective temperature bin relative to 18.5�C.
Note, the coefficients, estimated in log points, have been converted to percentage change by the following: bpercentchange = expðbestimatedÞ� 1. For small

changes, bpercentchangezbestimated .
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(i.e. blackout) events. The dashed line is the estimated counterfactual load had ERCOT had the tempera-

ture sensitivity observed in 2002–2006 as compared to 2017–2020. It is constructed by taking the ERCOT

load forecast and adding the difference between the estimated load deviation based on 2002–06 temper-

ature responsiveness and 2017–20 responsiveness, both evaluated at the observed hourly temperatures in

February 2021.

At the peak, during the morning of February 16, our model indicates heightened temperature responsive-

ness accounts for an additional 10,800 MWof demand. Across the entire period of the February 2021 black-

outs, we estimate heightened temperature sensitivity increases total forecast load by 8%, as compared to

what load would have been had temperature sensitivity remained at 2002–06 levels. This effect is after con-

trolling for annual trends, such as population growth, and is purely indicative of increased temperature

sensitivity.

DISCUSSION

Temperature sensitivity to cold weather in most parts of Texas has increased over the past 20 years. We

estimate this increased sensitivity resulted in an additional 8% average load during the extreme cold of

February 2021 than would have occurred had temperature responsiveness remained at 2002–06 levels.

At the same time, electric heating shares have risen from 52% to 61% of households, an increase of roughly

two million homes, in the state of Texas over the past 15 years (U.S. Census Bureau, 2004; 2019). We stress

that lack of data preclude us from making causal claims as to the link between electric heating and the

observed change in sensitivity—the relationship we observe is strictly correlative—however, our results

are consistent with results from a simulation study (White and Rhodes, 2019) that shows increased electric

heating in the Texas’s residential sector leading to larger winter electricity peaks.

Our results highlight Texas’s heightened susceptibility to extreme cold weather events, a fact much dis-

cussed on the supply side of the power market, but with little conversation as to shifts in demand. The prev-

alence of inefficient electric resistance heat may play a large role in Texas’s temperature responsiveness to

cold weather; a shift toward more efficient heat pumps could prove valuable in reducing energy needs dur-

ing cold weather events, though at extreme temperatures these efficiency gains may be reduced. Our find-

ings suggest more work on the direct link between changes to heating equipment and electricity demand

should be undertaken to improve the accuracy of load forecasts to incorporate changing relationships.

Our results also have broader implications to other regions, in the United States and globally, increasing

their electrification of space heating. As efforts to achieve net-zero emissions increase, and electrification
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Figure 2. Temperature response function for Coast zone; below 10�C
Plotted are the estimated regression coefficients representing percentage difference in demand for each respective

temperature bin relative to 18.5�C Note, for visualizing this linear fit, the coefficients are shown in their estimated log

points.
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of space heating plays a central element in many pathways, this paper emphasizes the need to incorporate

the increased prevalence of electric heating to rethink temperature-demand relationships. Heightened

temperature sensitivity will require greater capacity in cold weather conditions than previously considered

to ensure electric reliability.

Limitations of the study

This study provides a historical correlative analysis of the relationship between cold weather and electricity

demand in Texas, and how it has changed over time. Two limitations of the current analysis are (1) its use-

fulness for prediction, and (2) its lack of causal link as to the underlyingmechanism that is changing the rela-

tionship between cold temperatures and electricity demand. We discuss each in turn.

Prediction

We control for changes over time using a year fixed effects approach. This approach means we do not need

to arbitrarily specify the factors that affect demand over time, allowing the year fixed effect to flexibly sub-

sume all potential factors. However, it limits our study’s usefulness for prediction purposes. An alternative

approach would be to include a large set of conditioning variables, such as population growth, GDP, indus-

trial composition, etc., allowing for predictions of future demand by incorporating assumptions on the

future level of these variables. The trade-off with such an approach is potential omitted-variable bias

and the requirement of assumptions around the value of these conditioning variables for prediction.

Causal mechanism

We highlight the associative link between the increased sensitivity of electricity demand to cold weather

and the increased use of electric space heating in Texas. However, this link is purely correlative, as we

have insufficiently granular data to perform a proper causal analysis using panel data. A potentially fruitful

area of future research would be to use household-level electricity data, along with a household-level panel

on space heating, to properly estimate the causal link between electric space heating adoption, cold tem-

perature, and electricity demand.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

Figure 3. Load forecast and counterfactual load with 2002–2006 temperature sensitivity

ERCOT forecast load is used in place of actual load as the firm load shed truncated desired demand. The counterfactual

hourly load is calculated by taking the ERCOT load forecast and adding the difference between the estimated load

deviation based on 2002–06 temperature responsiveness and 2017–20 responsiveness, both evaluated at the observed

hourly temperatures in February 2021.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for comment should be directed to and will be fulfilled by the lead con-

tact, Blake Shaffer (blake.shaffer@ucalgary.ca).

Materials availability

Not applicable.

Data and code availability

d All data used in the analysis (electric load, weather, and heating type) have been deposited at https://

github.com/blakeshaffer/ercotproject/ and are publicly available as of the date of publication.

d All original code used in the analysis has been deposited at https://github.com/blakeshaffer/

ercotproject/ and is publicly available as of the date of publication.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

In this method details section, we first describe the key data sources used in the analysis and present sum-

mary statistics. This is followed by a detailed description of our temperature response function estimation

method.

Temperature response function estimation method

We estimate the temperature response function, i.e. the relationship between temperature and electricity

demand, using hourly load and temperature data, separately across each ERCOT Weather Zone. Specif-

ically, we run eight separate regressions, one for each Zone (z), regressing the logarithm of hourly load

(yt ) on hourly temperature variables (Ttb) and a rich set of date and time fixed effects (Xt ):

log
�
yt;z

�
=
X
b

bb;zTbt;z + qzXt;z + et;z ; cz (Equation 1)

For the temperature variables, Tbtz , we use binned temperature dummies in 3�C increments, across the

range of observed temperatures in Texas from 2002 through 2021. For example, the variable T8�11�C;tz re-

ceives a ‘1’ if the temperature in hour t in zone z falls in bin b = (8 to 11�C], and a ‘0’ otherwise. The omitted

bin is the one centred around 18.5�C (roughly 65 �F), and thus the interpretation of each bin’s coefficient is

the log difference in demand between temperatures in the respective bin as compared to demand when

temperature is 18.5�C. For small changes, the log difference in demand can be roughly interpreted as the

percentage change in demand, i.e. 0.1 z 10% change. This approach allows for a flexible relationship be-

tween temperature and demand. An alternative approach, also used in the literature, is to use heating and

RESOURCE SOURCE IDENTIFIER

Deposited data

Weather Data National Oceanic and Atmospheric

Administration (NOAA)

https://www.ncdc.noaa.gov/

cdo-web/datatools/lcd/

Electric Load Data Electric Reliability

Councilof Texas (ERCOT)

http://www.ercot.com/gridinfo/

load/load_hist/

Heating Type Data United States Census Bureau https://data.census.gov/cedsci/

Software

R R for Statistical Computing https://www.r-project.org
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cooling degree days, essentially the absolute difference between recorded temperature and a ‘‘neutral’’

baseline of 18.5�C. We use temperature bins as it avoids the requirement to impose an arbitrary nadir to

the non-linear temperature-demand relationship. Any temperature bins with less than 10 hourly observa-

tions are dropped due to imprecision of their estimates.

Xt is a vector of date and time fixed effects that are predictable factors of demand. These include dummy

variables for year, month, day of week, and hour of day. Year fixed effects control for annual load growth

trends. This flexibly controls for levels shifts in demand due to time-varying factors, such as population

and prices. As a robustness check, we also run regressions using population-normalized demand as the

dependent variable. We do so by taking the logarithm of demand per capita in kWh, using hourly load

data and annual county-level population data aggregated to the ERCOT weather zone. While year fixed

effects remove level shifts in average demand due to population growth and other factors, population-

normalizing the demand variable allows us to check if sensitivity differs more or less in extreme conditions

due to population changes. We find no significant difference in the results. Monthly fixed effects control for

predictable seasonality in electricity demand independent of weather. Day of week controls for typical

weekday/weekend fluctuations in demand, and hour of day controls for predictable patterns of the intraday

shape of demand.We include interactions betweenmonth and hour, and between day of week and hour, to

reflect that the hourly demand profile differs both seasonally and across different days of the week. Our

identifying assumption is that after conditioning on these predictable factors of demand, the variation in

shocks to electricity demand (εt ) are uncorrelated with temperature. Because of the high resolution of fixed

effects covering key drivers of electricity demand that we include in our specification, as well as year fixed

effects making our identification based on within-year variation, we believe that this specification should

successfully identify the short-run effect of temperature on consumption. We note, also, that this method

follows that of many papers in the existing peer-reviewed literature (Auffhammer et al., 2017; Wenz et al.,

2017; Rivers and Shaffer, 2020).

After performing this estimation separately for each zone over all years in the dataset, we then separately

estimate the temperature response functions using data by zone in 5 year increments to determine the evo-

lution of temperature response functions over time. Specifically, a steepening of the left hand side of the

temperature response function—the region of cold temperatures—indicates heightened cold tempera-

ture sensitivity and thus for comparable cold temperatures, electricity demand is expected to be higher,

all else equal.
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Abstract

This analysis quantitatively compares the evolution in summer and winter peak

demands in the Electric Reliability Council of Texas (ERCOT) service area over

the 25-year period of 1997 to 2021 using a linear regression analysis. Weather

data for the days in which peak demand occurred were also compiled to in-

vestigate the relationship between peak heating and cooling loads and ambient

temperature. We found that the summer peak demand growth has been gener-

ally stable and approximately linear with time. The stable summer peak load is

likely a consequence of fairly constant temperatures observed on summer peak

demand days. Conversely, the winter peak demand growth has been less consis-

tent, varying much more around the broader trend. This phenomenon is likely

a consequence of high residential electrical heating load on winter peak demand

days, which saw temperatures that varied widely from the mean value. Thus,

resource planners in ERCOT should place less certainty on winter peak demand

projections and an increased level of winter preparedness on both the supply and

demand sectors appears warranted for resource planners in all regions. In light

of the high penetration of electrical heating equipment in Texas relative to other

regions, these events might foreshadow future resiliency challenges that other

regions will face as electric heating equipment is deployed in place of boilers or

furnaces for decarbonization purposes.

Keywords: Electrification, Distributed Energy Resources, ERCOT, Demand

Response, Energy Security and Risk Assessment, Peak Demand

Preprint submitted to Journal of LATEX Templates August 31, 2022



1. Introduction

Heating is the largest global energy end-use (about 50% of energy demand)

ahead of transport (29%) and electricity (21%). Forty-six percent of this heat

energy is consumed within buildings for space and water heating and to a lesser

extent, cooking [1]. Natural gas is used to heat 60% of U.S. households in cold

and very cold climates and 47% of U.S. households overall [2], thereby releas-

ing significant greenhouse gases from leaks and combustion-related emissions.

Consequently, the electrification of heating is a typical component of decar-

bonization efforts [3, 4], and bans on fossil-fuel based space heating equipment

have already been administered in numerous cities to achieve this end [5–7]. As

a result, electrical heating equipment as a portion of global heating technology

sales for residential and service buildings has been steadily increasing for years,

a trend that is expected to continue through the next decade [8]. These fac-

tors have led regional electric grid operators to anticipate a large expansion of

space heating demand from the residential and commercial sectors and predict

a potential switch from a traditional summer peak to a winter peak [9, 10].

Questions remain about how this new source of electricity demand will affect

electric grid operations. In particular, how will grid resiliency be impacted by

the electrification of space heating? How will electric load for residential space

heating, which already drives winter peak power demand [11], and is sensitive

to severe weather events, be affected by climate change?
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Figure 1: The residential sector in ERCOT (the Electric Reliability Council of Texas) is

responsible for approximately half of peak demand in the winter and summer [11].

A potential test case for answering these questions is the Electric Reliability

Council of Texas (ERCOT) regional power grid. The ERCOT grid is comprised

of a generation mix with high fractions of wind and solar, which much of the

U.S. system may soon resemble [12]. Additionally, a large portion of Texas

is in a semi-arid temperate climate and has population centers in hotter and

more humid parts of the state. Consequently, electrical heating equipment,

which is typically designed for more moderate temperatures, is prevalent. The

percentage of Texas household heating that is met by electricity is increasing

over time and is the 7th highest among U.S. states [13]. Thus, the demand-side

of ERCOT also resembles a future decarbonized grid.
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Figure 2: As of 2019, Texas had one of the highest rates of electric heating in the residential

sector in the United States [13]. Generally speaking, electric heating is more prevalent in

warmer climates (e.g. the southern part of the United States) or where there is abundant

hydroelectric power (e.g. the Pacific Northwest).

As a result of the warm climate, ERCOT resource planners have prioritized

managing the natural gas system and electricity grid such that they can meet

the demand from large amounts of electrically-operated air-conditioners on hot

summer afternoons. However, the events of the winter storm in February 2021,

which caused hundreds of deaths and blackouts and boil water notices for mil-

lions of people, plus prior winter storms in 2011, 1989, and 1983, among others,

should serve as reminders that Texas is not immune to extreme, widespread

regional winter weather that strains infrastructure reliability [14–17]. These

winter grid resiliency challenges could yield important lessons for future grid

operators in increasingly electrified economies.

The winter event of February 2021 left millions of Texans in ERCOT without

power for multiple days during some of the coldest and most widespread winter

weather seen in the state in decades. In fact, February 2021 was the first time

in recorded history that all 254 counties of Texas were under a winter storm

watch at the same time. [18]. This event presents the opportunity for a unique
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case study on a highly electrified region subjected to severe winter weather.

Having lost roughly half of all power generation capacity due to freezing

equipment, fuel shortages, and other issues, the grid was minutes away from

conditions that could have triggered a total system-wide blackout that then

could have required weeks or months for full recovery [16].

Given that Texas is the largest energy producing and consuming state in

the United States [19], it was a surprise to have a widespread energy outage

that caused hundreds of deaths. As such, there has been public outrage and

demands for change to prevent a similar disaster. Almost every relevant gov-

ernment agency including the Governor’s office, the State Legislature, Railroad

Commission (which is the oil and gas regulator in Texas), the Public Utility

Commission of Texas, and ERCOT have faced intense scrutiny or had its top

leadership replaced. Because they are under pressure to implement new regula-

tions or market reforms to prevent a future disaster, there is a need to inform

the policymaking process in Texas and other regions that may face similar chal-

lenges with data about key underlying trends.

While many reports have assessed the underlying acute causes of the Febru-

ary event itself and its meteorological underpinnings [14, 16, 17, 20, 21], to the

authors’ knowledge, none have taken a look at how seasonal peak demand has

changed over time nor investigated how non-flexible heating electrification may

have contributed to the disaster. This analysis seeks to fill that knowledge gap.

2. Methods and discussion

The methodology for this analysis is simple in principle yet allows for some

important observations. Peak demand data for the past 25 years in ERCOT

were compiled for the winter (December through February) and summer (June

through August) seasons [16, 22–25]1. A linear regression was used to assess

their growth over the 25-year period and the effect of ambient temperatures on

12001 summer peak demand sourced from [25] as ”July Load at ERCOT Coincident Peak

kW”.
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these events was investigated. Figure 3 shows how the winter2 and summer3

peaks have grown relative to each other along with a linear regression for each

season.
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ERCOT Seasonal Peak Demand (GW)

Winter Summer Winter Regression Summer Regression

Summer RegressionWinter Regression
y = 1.08x + 36.3

R2 = 0.74
y = 0.932x + 51.8

R2 = 0.97

Source: ERCOT | Graphic © 2022 The University of Texas at Austin

Figure 3: Winter and summer peak electrical demand in ERCOT grew from 1997 to 2021.

The bars are actual (or estimated peak demands if load shed happened) peak demands and

the dotted lines are the linear fit estimations of peak demand for each season and each year.

General observations of the results yield two main conclusions; 1) ERCOT’s

winter peak is growing about 15% faster than its summer peak, based on the

slopes of the linear regressions and 2) the winter peak is more erratic than the

summer peak, based on the lower R-squared values of the same regression. The

winter peak is, on average, about 3.5 GW off (above or below the mean of

2Winter peaks in 2011 and 2021 were estimated because firm load shedding prevented the

full load from being served. The peaks for those years were taken from ERCOT estimates of

what load would have been absent load shed. Winter peak in 2001 was taken from an ERCOT

report as 2001 load data were not available.
3Summer peak in 2001 was taken from ERCOT Coincident Peak Calculations as 2001 load

data were not available.
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the absolute values of the regression model errors) the linear model estimation,

while the summer peak is only about 1 GW off, on average. Figure 4 shows how

each year’s summer and winter peaks differ from the linear model’s prediction.
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Actual seasonal peak demand minus linear fit (GW)

Winter Residual Summer Residual
Source: ERCOT | Graphic © 2022 The University of Texas at Austin

Figure 4: The difference between the estimated seasonal peak and the actual peak for each

year shows that winter peak demand is much more variable (and therefore harder to predict)

than summer peak demand.

The linear fit in Figure 3 shows that the summer peak demand growth is

more “stable” (or consistent) than the winter peak. A visual inspection of the fit

(dotted lines) versus the actual4 peak demands (bars) shows that the summer

peak growth is more linear than the winter model. This conclusion is also

indicated by the R-squared values of the respective models (higher R-squared

values correspond to higher linearity): R-squared value of 0.74 in the winter vs

0.97 in the summer.

The lower R-squared value of the winter model indicates that the growth

in winter peak is less predictable. The summer peak is presumably a combi-

4Estimated peak demands in case of any firm load shed.
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nation of consistent population and economic growth trends offset somewhat

by efficiency improvements to space conditioning appliances. The winter peak

has similar factors with two confounding weather factors from climate change:

slowly increasing average prevailing temperatures (which reduces average total

seasonal energy for heating) and ongoing risk for intense winter storms.

Since the general formation of ERCOT, the annual winter peak has never

exceeded the summer peak. If the current rate of change shown in Figure 1

continues, it would take over 100 years from the start of the analysis (1997)

for the average winter peak to systematically surpass the average summer peak.

However, if the ERCOT grid had been able to deliver as much power as was

estimated to have been demanded in the winter storm of February 2021 [16]

the winter peak would have surpassed the summer peak for the first time since

the Texas grid operator began recording data for its modern grid footprint.

Furthermore, if electrified heating deployment rates accelerate, then the summer

peak demand will grow less quickly (because of commensurate upgrades to air

conditioning efficiency) and the winter peak demand will grow more quickly,

in which case it is reasonable to anticipate that the winter peak will regularly

exceed the summer peak much sooner than a century from 1997.

Because of the higher variability, peak demand projections for ERCOT,

which are generally based on a “normal weather year” and are generally lin-

ear [26], should include more uncertainty on the forecasted winter peak than

the summer peak.

While the summer cooling season ramps up and down over several months,

the winter heating season is much more erratic. For homes with electric heating,

the increase in demand for home heating when outside temperatures drop to

levels seen in February 2021 is larger than the demand is for home cooling when

a heat wave pushes temperatures to summer peak levels [27].

While the residential sector is generally responsible for most of the large

swings in demand, residential demand response in ERCOT is small relative to

commercial and industrial demand response [28]. As such, residential demand

response programs that seek to reduce peak demand are mostly an untapped
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potential solution for grid reliability.

Weather influence on peak demand. Degree day data indicate that, over the

past 25 years, temperatures were more erratic on winter peak demand days

than on summer peak demand days. A degree day compares the mean outdoor

temperature for a location to a base temperature as a measure of cooling or

heating load [29]. Cooling degree days (CDD) and heating degree days (HDD)

are calculated using ambient temperature readings collected at a particular lo-

cation throughout the day. The time in days between two temperature readings

is multiplied by the number of degrees by which the ambient temperature was

above or below the base temperature over the period to get the degree days [30].

The further the ambient temperature is above or below the base temperature,

the higher the CDD or HDD respectively, and thus the higher the cooling or

heating load.

CDD =
∑

time between temp readings (days)×(ambient temp − base temp)

HDD =
∑

time between temp readings (days)×(base temp − ambient temp)

In this study, we calculated the number of degree days during each peak

demand day. The base temperature for calculating both CDD and the HDD

was set to 18.5° C (65.3° F) and an ERCOT-wide degree day (DD) value was

calculated by taking DD values from the largest city in each ERCOT weather

zone [31, 32] and weighting each DD value by the population in the weather

zone5 [33].

ERCOT DD =
∑

DD from largest city in each weather zone× weather zone population
total ERCOT population

52021 population projected based on 2019-2020 percent population growth.
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Figure 5: ERCOT uses eight weather zones for planning purposes [34].

CDD on summer peak demand days were fairly constant near the mean

CDD value. However, HDD for winter peak demand days were more erratic and

varied widely from the mean value (Figure 6). The unpredictable nature of the

temperatures on winter peak demand days and more consistent temperatures

on summer peak demand days is mirrored by the heating and cooling loads,

respectively.
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Weather Zone City
Weather

Station ID

Average Summer

Peak Demand

Day CDD

Average Winter

Peak Demand

Day HDD

Coast Houston KIAH 12.50 16.22

East Tyler KTYR 13.01 19.83

Far West Midland KMAF 11.88 20.93

North Wichita Falls KSPS 13.57 22.56

North Central DFW KDFW 14.81 20.44

South Corpus Christi KCRP 11.59 13.39

South Central Austin KAUS 12.63 17.57

West Abilene KABI 12.72 21.61

Table 1: Summary of weather stations used in calculation of state-wide population-weighted

CDD and HDD values and average CDD and HDD values.
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Figure 6: CDD and HDD values in ERCOT on peak summer demand days and peak win-

ter demand days, respectively, show greater variability in winter peak demand for heating.

ERCOT-wide DD values are calculated from DD values for the largest population center in

each ERCOT weather zone weighted by the population of each weather zone.
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These weather trends that drive heating and cooling loads impact power grid

operations. Overall, about 55% of residential heating equipment in the West

South Central census region of the US, which includes Texas, is electric. Of

those electric heaters, about 85% are electric resistance and the remaining 15%

are heat pumps [35]. Electrical resistance heating has very high power draws

as compared to other forms of heating, such as heat pumps. Heat pumps can

provide heating using much less electricity most of the time. However, many of

the heat pumps installed in the region are not cold-weather heat pumps, rather

they are usually designed for mild climates, and thus are only able to operate

down to a specified low outdoor temperature before switching to backup or aux-

iliary heating modes that rely heavily on electric resistance heating or natural

gas [36, 37]. When this switch happens, it can create a large jump in the elec-

tricity demand of each individual heating system that in aggregate can create

a large upward disruption in grid demand as a cold front moves through. An

analysis of per capita winter peak demand versus HDD exhibits this effect: per

capita winter peak demand appears to have a polynomial relationship with de-

gree days, becoming increasingly high for higher HDD (Figure 7). Additionally,

data points from more recent years with higher penetration of electric heating

tend to reside above the regression line, indicating that more electricity is con-

sumed per capita when more electrical heating equipment is connected to the

grid.
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Figure 7: The relationship between 1997-2021 per capita winter peak demand and winter

peak demand day HDD appears to be polynomial. Percent heating electrification data for

this figure was sourced from the American Community Survey [13] and the Residential Energy

Consumption Survey [35] and interpolated or extrapolated for years in which data was not

available.

Normalizing the peak demand data by population and weather demonstrates

that the summer per-capita, per cooling degree day peak demand is decreasing,

indicating that the electrical efficiency of meeting the summer peak demand is

increasing (Figure 8).
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However, the winter per-capita, per heating degree day peak demand is

increasing, indicating that the electrical efficiency of meeting the winter peak

demand is decreasing. However, unlike the summer peak demand which has

been driven by electrically-powered air-conditioners for the entire period of our

dataset, the makeup of heating equipment has changed over time. For example,

in 1997, only about 40% of homes in Texas used electrical heating, but that

number has increased over time, meaning that the percentage of homes heating

with other fuels, such as natural gas, has declined [13, 35]. Analyzing the flows

of natural gas is beyond the scope of this analysis, but the positive slope, in

Figure 8, of the winter per-capita, per heating degree day peak demand linear

fit does indicate (although weakly) that electricity use in the winter is generally

increasing even when population and weather are considered.
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Figure 8: Per capita peak demand per DD is decreasing over time for summer peak demand

days and increasing over time for winter peak demand days.
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3. Suggestions for system and resource planning

As Texas and other regions electrify heating, more attention will need to be

given to the impacts of extreme periods of cold weather on winter peak demand.

Increased efficiency and cold-weather standards for heat pumps could allow the

continued electrification of heating to avoid making as big of an impact on winter

peak demand by delaying the individual heater’s switch into auxiliary (electric

resistance) mode, thereby reducing how often demand grows polynomially.

Increased residential building envelope efficiency could also reduce the amount

of heating needed by the average home which would reduce the amount of in-

dividual coincident heating systems operating and thus lower overall heating

demand from the residential sector. Most of Texas is located in “hot” climate

zones and thus more attention has been paid to constructing homes to with-

stand high summer temperatures. Homes in Texas are generally designed to

have adequate insulation levels and heating systems to withstand -4C (25F)

[30] and are thus not prepared to cope with the much colder temperatures from

events such as the winter storm in February 2021.

On the demand side, it’s worth noting that because half of the peak demand

in winter and summer is from space heating and cooling, these end-uses represent

a significant opportunity for demand response (e.g. dispatching an intentional

reduction in peak demand by turning off heating or cooling devices). These

factors have led grid operators to posit that water heating and HVAC are good

candidates for load control, and could allow buildings to provide grid services

as thermal batteries [9]. If equipment with flexible features is installed, then

rotating shut-offs to electric air conditioners and heaters can help preserve grid

reliability and can be cheaper and quicker to install than to build additional

generating supply.

On the grid supply side, it should be noted that by the end of 2022 it is pos-

sible that 4-5 GW of Texas power generation (or ∼5% of total Texas generation

capacity) will come from the distribution grid [38]. These distributed energy

resources (DERs) could provide valuable grid services if properly coordinated.
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Price signals and/or incentives should be administered to ensure that DERs are

optimally placed to provide grid reliability and cost benefits [38]. Additionally,

increased attention to resource adequacy levels in the winter should be a fo-

cus for future operations. While beyond the scope of this work, it is possible

that the addition of a new winter reliability product for the ERCOT market

might be necessary to meet the additional challenges that are associated with

the increased uncertainty in predicting the winter peak demand.

In general terms, grid planners can have reasonable confidence that each

summer in ERCOT will be hot, but less certainty around how cold each winter

will be. Thus, this finding would indicate the ERCOT grid might need more

reserve capacity (higher reserve margin) to handle higher levels of uncertainty

in peak demand in the wintertime than in the summer, particularly if the elec-

trification of heating continues.

Currently, generation maintenance outages for generators and transmission

assets are restricted between May 15 and September 15 so that most assets are

ready to meet the summer peak demand. However more attention might need

to be placed on having more capacity online during winter months to cover the

higher levels of uncertainty. But squeezing more generation outages into smaller

periods of time might then create supply shortages in the shoulder months.

4. Conclusions

This analysis assessed the relative change in summer vs. winter peaks in

ERCOT from 1997 to 2021 and found that while the summer peak demand

growth is relatively stable, the winter peak demand growth is less so. Addi-

tionally, it was shown that the instability of the winter peak demand growth

is a consequence of erratic winter weather and electrical heating that becomes

increasingly inefficient at lower temperatures. These results imply that special

attention will need to be paid to how ERCOT and other grid operators plan

for winter heating seasons, particularly given the trend of heating electrification

in the residential sector, which was already the swing consumer of electricity
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in both the summer and winter seasons. Namely, planners should use higher

uncertainty in their estimates for peak winter demand. Increased general effi-

ciency standards for buildings and in particular heat pumps could mitigate some

of the demand side winter issues and an increased level of uncertainty placed

on the aggregate electricity grid winter peak demand estimates could help drive

policies to increase winter reserves.
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