KEYNOTE PAPER

TWO-PHASE MICROFLUIDICS FOR SEMICONDUCTOR CIRCUITS AND FUEL CELLS

Mechanical Engineering Department
Stanford University
Stanford, CA 94305-3032

ABSTRACT

Industrial trends are presenting major challenges and opportunities for research on two-phase flows in microchannels. Semiconductor companies are developing 3D circuits, for which multilevel microfluidic cooling is important. Gas delivery microchannels are promising for PEM fuel cells in portable electronics. However, data and modeling are needed for flow regime stability, liquid entrainment/clogging, and bubble inception/departure in complex 2D and 3D geometries.

This paper provides an overview of the Stanford two-phase microfluidics program, with a focus on recent experimental and theoretical progress. Microfabrication technologies are used to distribute heaters, thermometers, pressure sensors, and liquid injection ports along the flow path. Liquid PIV quantifies forces on bubbles and fluorescence imaging detects flow shapes and liquid volume fraction. Separated flow models account for conjugate conduction, liquid injection, evaporation, and a variety of flow regimes.

This work benefits strongly from interactions with semiconductor and fuel cell companies, which are seeking validated models for product design.

KEYWORDS
Microchannels, microfluidics, two-phase flow, cooling, boiling, fuel cells.

NOMENCLATURE

\(A \) cross-sectional area \([m^2] \)
\(f \) friction factor
\(G = \rho u \) mass flow rate per unit area \([kg/s \cdot m^3] \)
\(H = h + u^2/2 \) total enthalpy per unit mass \([J/kg] \)
\(h \) enthalpy per unit mass \([J/kg] \)
\(h_{\text{conv}} \) convective heat transfer coefficient \([W/m^2-K] \)
\(h_m \) liquid water enthalpy \([J/kg] \)
\(k \) thermal conductivity \([W/m-K] \)
\(\dot{m} = \rho u A \) mass flow rate \([kg/s] \)
\(P \) channel perimeter \([m] \)
\(P_w \) wetted perimeter \([m] \)
\(P_h \) heated perimeter \([m] \)
\(p \) pressure \([Pa] \)
\(Q = u A \) volumetric flow rate \([m^3/s] \)
\(q^* \) heat flux \([W/m^2] \)
\(T \) temperature \([K] \)
\(T_f \) fluid temperature \([K] \)
\(T_s \) channel wall temperature \([K] \)
\(u \) axial velocity \([m/s] \)
\(z \) axial direction \([m] \)
\(\alpha \) gas volume fraction
\(\delta \dot{m} \) water injection mass flow rate \([kg/s] \)
\(\Gamma \) mass transfer rate per unit volume \([kg/s \cdot m^3] \)
\(\mu \) dynamic viscosity \([Pa-s] \)
\(\rho \) density \([kg/m^3] \)
\(\tau \) shear stress \([Pa] \)
\(\xi \) energy fraction dissipated at the two fluids interface

INTRODUCTION

Over the past few decades and with the refinement of microfabrication techniques, the use of microchannels has become promising for a variety of industrial applications. Examples include biological applications for front end sample preparation (purification, separation and concentration), cell sorting and even more fundamental studies of mechanotransduction. Microchannels continue to play an
integral part in thermal management (microchip cooling, microreactors) and energy systems (fuel cells, microcombustion) applications.

The effective use of microchannels in these applications requires proper understanding of the physics underlying flow at these scales. Among the specifics is the behavior of multiphase flows at reduced dimensions. Liquid-vapor flows are of particular interest since surface tension becomes so dominant at the microscale that macroscopic behavior no longer applies. A critical enabling tool in the understanding of the behavior of any type of flow is visualization, and much progress has been made recently using a variety of techniques based on high-resolution microscopy, fluorescence techniques, and micro PIV.

In addition, relatively straightforward experimental tasks such as localized pressure and temperature measurements become quite challenging at the microscale. In order to obtain locally distributed measurements, temperature and pressure sensors must be developed and integrated within the microchannel fabrication.

Two-phase flow in microchannels has received much attention, including a number of outstanding review articles in prior editions of the present microchannel conference. A generalized search on the topic returns thousands of relevant manuscripts. There are conferences specialized on the topic of fluid flow in micro and minichannels and two-phase flow constitutes a leading topic, Kandlikar (2003). Of particular interest has been the study of two-phase flow in microchannels due to heat transfer (boiling and condensation), Kandlikar and Balasubramanian (2004), Stanley and Barron (1997), Zhang et al. (2002). It has attracted attention as a means of removing heat from microprocessors in computers, Jiang et al. (2002). To understand convective boiling in microchannels, single and multiple channel structures have been developed using conventional machining, Peng and Wang (1993), Peng et al. (1998), and silicon micromachining, Hetroni et al. (2001), Jiang et al. (2000), Lee et al. (2003), Peles et al. (2001), Zhang et al. (2001), Zhang et al. (2002).

With the promises of performance gains in PEMFC by using microchannels (0.05 – 1 mm) to improve gas routing, Cha et al. (2003), two-phase flow in microchannels have become a leading topic of interest within the fuel cell community. The complexities of water management have been previously investigated, Berg et al. (2004), Wang, Z. H. et al. (2001), You and Liu (2002). However, most studies have focused on the issue of water flow and transport only in the Membrane Electrode Assembly (MEA) and Gas Diffusion Layer (GDL). Very few studies have been directed towards understanding of the flow behavior in the microchannels, and most are theoretical or computational in nature, Yuan et al. (2001), Yuan et al. (2003). Experimental work related to two-phase flow in fuel cell channels is limited and relates mainly to minichannels (mm size), Mench et al. (2003), and direct methanol fuel cell systems, with low void fractions, Yang et al. (2002).

In this paper we review the work on two-phase flow being carried out at the Micro Heat Transfer Laboratory (MHTL) at Stanford. In specific we focus on the advances in terms of imaging, metrology and modeling of microchannels for microchip cooling and fuel cell applications. Task specific samples are manufactured employing microfabrication technology that enables imaging and integration of distributed sensing elements. White light and fluorescence based techniques are employed in order to characterize flow behavior and structure. They allow for film thickness, liquid volume fraction and velocity fields measurements among other things. The samples integrate heaters and temperature sensors for heat and mass transfer characterization. The thermistors can be made using either a metal, such as aluminum, or by selectively doping the silicon substrate. The experimental work is complemented by modeling of the convective heat transfer and fluid mechanics of the flows.

MICROCHANNEL DESIGN AND FABRICATION

Depending on the specific application, microchannels for each particular task have their own specific requirements which make their fabrication unique. They do, however, share a lot of common microfabrication processing ground. Microchip cooling test samples focus on the convective heat transfer nature of the flow and as such require special handling and characterization of the heat flow. As such, these channels are fabricated in a suspended beam architecture that limits the amount of axial conduction losses, Kramer et al. (2004). In this manner the applied heat can be confined to the channel region and more accurate estimates of the actual convective heat transfer and transport due to fluid flow and phase change can be obtained (Figure 1).

![Figure 1](image-url)

Figure 1: (a) Schematic test device showing suspended microchannel with inlet and outlet reservoirs. (b) Front side photograph of final structure showing suspended channel, reservoirs, and surfboards attached to pyrex. (c) Back side photograph showing heater side along with inlet and outlet fluidic ports.

In the case of microchannels for fuel cell applications the main focus is shifted from the heat transfer aspect of the flow towards the mass transport and liquid entrainment effects on flow behavior. Of course any study that involves mass transport due to phase change requires an understanding of the heat transfer characteristics of the system and as such
understanding of the heat transfer plays an important role. For these particular studies it was important to achieve controlled introduction of liquid water into the flow stream. Thus, samples are fabricated with distributed water injection slots or channels (Figure 2). The architecture of the injection geometry allows for varied studies where a single injection slot sample can be used to isolate the mechanics of droplet entrainment while more involved geometry incorporating multiple injection slots are useful in understanding the global interactions of the liquid with the gas, Hidrovo et al. (2004).

Both types of samples incorporate integrated temperature sensing and heating capabilities. The heaters are fabricated by depositing aluminum as resistive elements. Temperature sensors consist of either deposited aluminum or doped silicon. Resistance temperature detectors or RTDs are based on the natural change in the sensor’s resistance with temperature. The temperature coefficient of resistance (TCR), symbolizes the resistance change factor per degree of temperature change, Wang, F.-M. et al. (2005).

The overall process flow for a full structure consists of the following steps (Figure 3): (a) 1500 Å of thermal oxide is grown as an electrical insulated layer. (b) 0.5 µm of aluminum is deposited and patterned on the back surface as the heaters and thermistors. When implementing silicon doped temperature sensors, a previous lithography step is carried out for selective ion implantation. (c) 2000 Å of low temperature oxide (LTO) is deposited to protect heaters and temperature sensors. (d) Pad-etch to open contact of heaters and sensors for wire bonding and of through-etch holes for air/water inlets and outlets. Oxide in the front side is also etched away in this step. (e) To create the distributed water injection layout in the fuel cell application channels, silicon is etched 5 µm deep for water injection channels by Deep Reactive Ion Etching (DRIE). (f) Silicon is etched 200 µm deep by DRIE to create the main channel. (g) Etch through holes for air/water inlets and outlets. For the microchannel cooling test samples this step is also used to etch away the majority of silicon material surrounding the microchannel. This creates the suspended and isolated beam structure that constraints heat flux to the channel itself with minimal conduction losses to the substrate. (h) Pyrex glass is anodically bonded to the top of the silicon to provide optical access of the flow.

Fabrication of both type of samples rely heavily in the use of Deep Reactive Ion Etching (DRIE) to carve out the microchannels in a silicon substrate. Selective metal (aluminum) deposition or silicon doping by means of lithography is the backbone for the fabrication of temperature sensors on the opposite side of the substrate. Optical access is achieved with the anodic bonding of Pyrex glass to seal the etched microchannels.

Figure 2: Distributed water injection test structures for fuel cell applications. (a) First generation structure with a single water injection slot. (b) Second generation structure incorporating serpentine geometry, distributed water injection throughout its entire length and temperature sensors in the backside.

Fabrication of both type of samples rely heavily in the use of Deep Reactive Ion Etching (DRIE) to carve out the microchannels in a silicon substrate. Selective metal (aluminum) deposition or silicon doping by means of lithography is the backbone for the fabrication of temperature sensors on the opposite side of the substrate. Optical access is achieved with the anodic bonding of Pyrex glass to seal the etched microchannels.

Figure 3: Microfabrication process: (a) Growing of thermal oxide. (b) Aluminum deposition and patterning on back surface. (c) Protective low temperature oxide (LTO) deposition. (d) Pad-etch to open contacts and front oxide etching. (e) Deep Reactive Ion Etching (DRIE) of water injection slots. (f) DRIE of air and water channels. (g) Etch through holes for air/water inlets and outlets. (h) Anodic bonding of Pyrex glass on the top of the silicon.

OPTICAL CHARACTERIZATION

Optical characterization of the flows is mainly achieved through the use of white light and fluorescent imaging. Besides flow structure classification, the optical techniques employed allow quantification of flow parameters such as film thickness, liquid fraction and velocity. At the heart of these measurements is a Nikon TE2000U inverted epifluorescence microscope system which can also be used in white light mode. A Roper Scientific 12-bit CoolSNAP ES CCD camera is used for image capture with 4X and 10X objectives. A metal halide lamp and appropriate filter cubes are used for fluorescence purposes (mainly Fluorescein), Hidrovo et al. (2004). Figure 4 shows a schematic of the microscope configuration in fluorescence mode.
Fluorescence is a photoluminescence process by which a fluorophore molecule (fluorescent dye) absorbs light of certain wavelength (color) and subsequently emits light of longer wavelength (lower energy). This difference in color between the absorbed (exciting) and emitted light allows for very distinctive imaging since the fluorescence becomes a tracer. In most instances fluorescence tracking of the liquid phase is achieved by mixing an appropriate fluorophore with water. In other instances, such as µPIV, tracking of fluorescent particles seeded into the flow is used to infer properties of the flow such as velocity.

In stratified two-phase flow fluorescence is used to accurately determine the extent of the liquid phase, Steinbrenner et al. (2005). Fluorescein is used to track where the water is. Figure 5 shows a water film imaged with (a) white light and (b) fluorescence. The air-water and water-channel interfaces are clearer and more distinguishable in the fluorescence image. This clarity allows the images to be used for accurate quantitative measurements of the film extent (thickness) in the plane of the image which are made by counting the number of pixels that are brightened by fluorescence. The pixels are counted according to whether the brightness of that pixel exceeds certain threshold brightness. To measure the film thickness in the y-direction, pixels above the threshold brightness in each column of pixels are counted and added up. This number is multiplied by the vertical dimension of a pixel to obtain the film thickness. Figure 6 shows a plot of film thickness versus pressure drop obtained using this technique.

Fluorescence is also used for high speed spatially averaged liquid fraction measurements, Fogg et al. (2004). Just as in the case of film thickness measurements Fluorescein is used for water tracking purposes. However, the CCD in the epifluorescence system is replaced by a photodiode with a much faster response time and capable of short transient measurements. The signal of the photodiode is proportional to the total fluorescence emitted from within the field of view of the microscope. As such it is also indicative of the liquid fraction. The system is calibrated with the use of a CCD for actual spatial measurements of void fraction. Figure 7 shows a typical signal from the photodiode for a flow with a time average liquid fraction of 0.5. Figure 8 shows actual measurements obtained from this technique for flows with different time averaged liquid fractions. The validity and accuracy of this technique are evident from this plot.

Figure 4: Epifluorescence microscope imaging setup.

Figure 5: Comparison of (a) white light and (b) fluorescence imaging of the water film in the microchannel.

Figure 6: Film Thickness as a function of pressure drop across the channel for water flow rate of 100 µL/min.

Figure 7: A portion of the transient signal for a run in which the predicted average liquid fraction is 0.5.
Another technique based on the use of fluorescence is \(\mu \)PIV. It allows liquid velocity field measurements, something of particular interest during bubble growth in a heated microchannel, Wang, E. N. et al. (2004). The working fluid (deionized water) is seeded with 0.7 \(\mu \)m fluorescent particles to a volume density of 0.025\%. The particles (Duke Scientific) have a peak excitation wavelength in the blue (\(\lambda = 468 \) nm) and have a peak emission wavelength in the green (\(\lambda = 508 \) nm). A pulsed laser is used to excite the particles while a synchronized scientific CCD captures the fluorescence emissions coming from the particles. These fluorescence images contain information regarding the particle’s spatial distribution in the flow. An image cross correlation algorithm is used to track the movement of particles from one image to the next to determine flow displacement fields and consequently velocity fields. Figure 9 shows a typical \(\mu \)PIV image and velocity vector field obtained for single phase liquid flow in a microchannel.

Figure 8: Comparison of the time-averaged liquid fraction measured by the photodiode to the predicted delivered void fraction.

MODELING

There are two approaches to modeling liquid-vapor two-phase flows. The first treats the flow as a homogenous fluid, Levy (1999), with properties that are the mass weighted averages of the local properties of the liquid and the vapor. These properties are used to evaluate the incompressible Navier-Stokes and energy equations for a single fluid, Vigneron et al. (2004).

\[
\frac{d}{dz} \left(\delta \bar{u} \right) = \frac{\delta \dot{m}}{A} \tag{1}
\]

\(\delta \dot{m} \) accounts for the formation and introduction of liquid water into the flow as is the case for microchannels in the cathode side of fuel cells. This liquid water addition is treated as a source term. In two-phase boiling flows this term would be equal to zero. The momentum and energy equations for the homogeneous model are:

\[
\frac{d}{dz} \left(\delta \bar{u}^2 \right) = - \frac{dp}{dz} + \frac{p}{A} \tau_v \tag{2}
\]

\[
\frac{d}{dz} \left(\bar{p} \left[\overline{h} + \frac{\bar{u}^2}{2} \right] \right) = h_{\text{conv}} \frac{P}{A} \left(T_s - T_f \right) + \frac{h_u}{A} \delta \dot{m} \tag{3}
\]

The homogeneous model limits the physics that can be incorporated into the model. The two phases are considered to be uniformly distributed within each grid element. Local temperature and pressure differences between phases can not be captured by treating the two phases as a homogenous fluid.

On the other hand separated flow models incorporating interface exchanges have been introduced to permit different gas and liquid velocities and flow directions as well as different liquid and gas temperatures, Zhang et al. (2002). These models still rely on one-dimensional formulations and upon spatial averaging. In other words, they do not consider fluid variation of properties (e.g. velocity and temperature) and their gradients at the interfaces or at the wall boundaries. Such two-fluid models therefore require closure laws to deal with the interfaces as well as the wall boundary conditions. Because these closure laws are known to depend on flow patterns, flow regime maps must also be specified. The generalized two-phasic mass, momentum and energy conservation formulations for a separated flow model are given by

\[
\frac{\partial}{\partial z} \left[\rho_i \overline{u_i} \right] = \Gamma \tag{4}
\]

\[
\frac{\partial}{\partial z} \left[\rho_i (1 - \delta) \overline{u_i} \right] = -\Gamma + \frac{\delta \dot{m}}{A} \tag{5}
\]

Where

\[
\overline{u_i} = \frac{1}{A_{i}} \int u_i dA_i = \frac{G_{\overline{u_i}}}{\delta \rho_i} \tag{6}
\]
\[\bar{u}_L = \frac{1}{A_L} \int u_L dA_L = \frac{G_L}{(1-\alpha)p_L} \]

(7)

are the average liquid and gas velocities, and \(G_G \) and \(G_L \) are the mass flow rates of gas and liquid per unit area.

Equation (4) allows for some of the fluid to be transferred (or converted) into the gas (or vapor) phase at the rate \(\Gamma \) per unit volume. Some of that transfer can occur at the wall and the rest at the interface.

The corresponding phasic momentum equations are:

\[\frac{\partial}{\partial z} \left[\rho_p \bar{u}^2 \right] = -\alpha \frac{\partial \bar{p}}{\partial z} - \frac{P_w \bar{r}_{wG}}{A} - \frac{P_{dr}}{A} + \Gamma \bar{u} \]

(8)

\[\frac{\partial}{\partial z} \left[\rho_L (1-\alpha) \bar{u}^2 \right] = -(1-\alpha) \frac{\partial \bar{p}}{\partial z} - \frac{P_w r_{wL}}{A} + \frac{P_{dr}}{A} - \Gamma \bar{u} \]

(9)

The terms on the right side of equations (8) and (9) are the forces on phase \(k \), where \(k \) can represent the liquid phase \(L \) or the gas phase \(G \). The first term on the right side of equations (8) and (9) is the net pressure force acting on phase \(k \). The second and third terms are the shear stresses acting on the phase at the wall and at the interface, and they are denoted respectively by \(r_{w_k} \) and \(\tau_{dr} \). The parameter \(P_{w_k} \) is the part of the wall perimeter wetted by phase \(k \). The next term on the right side represents the momentum addition into phase \(k \) by mass exchange at the interface. The mass entering phase \(k \) has an interface velocity \(\bar{u}_i \).

The corresponding phasic energy equations can be written in terms of total enthalpy \(H_k = h_k + \bar{u}_i^2/2 \), which leads to:

\[\frac{\partial}{\partial z} \left[\rho_p \bar{H} \right] = \frac{q_{wG} P}{A} + \frac{q_{wL} \bar{m} G}{A} + \xi \frac{P}{A} \tau_{wL} \]

(10)

\[\frac{\partial}{\partial z} \left[\rho_L (1-\alpha) \bar{H} \right] = \frac{q_{wG} P}{A} + \frac{q_{wL} \bar{m} G}{A} - \Gamma \bar{H} + \xi \frac{P}{A} \tau_{wL} \]

(11)

The first and second terms on the right-hand side of equations (10) and (11) are the sensible heat inputs from the interfacial perimeter \(P_I \) and from the heated portion of the perimeter wetted by phase \(k \), \(P_{w_k} \). The third term accounts for energy addition to phase \(k \) due to interfacial mass transfer with \(\bar{H}_a \) being the total enthalpy characteristic of this exchange. The last term is related to the interfacial energy dissipation. The parameter \(\xi \) represents the fraction of energy dissipated at the interface that gets transferred to the gas phase. For the case of microchannel cooling of integrated circuits, where heat transfer is the most relevant parameter, the energy balance equation must be extended to incorporate conduction in the solid as a boundary condition. This leads to a conjugate problem that must be simultaneously solved for the temperatures in the flow as well as in the solid.

In order to properly and formally solve the conservation equations, formulations must be established for the exchange terms between the two phases and with their boundaries. This is the basis behind the Lockhart-Martinelli correlations and parameters, which are usually determined by fitting experimental data and are dependent on flow regime. Our approach has been to formulate physics based correlations for the different flow regimes. We use the exact analytical solutions from simple flows to extract approximations for the correlations of more complicated flows and geometries that do not lend themselves to simple formulations. Thus, rather than formulating correlations from experimental data fitting we use an ab initio approach and use the experimental data for validation. A particular example for two-phase stratified flow will be presented in the next section.

RESULTS AND DISCUSSION

The wealth of experimental and modeling work has allowed characterization of some interesting phenomena in two-phase flows for both microchannel cooling and fuel cell water management applications. Axial temperature distribution, Zhang et al. (2002), stratified flow film thickness, Hidrovo et al. (2004), Steinbrenner et al. (2005), and water slug detachment criteria, Hidrovo et al. (2005), are among the critical parameters investigated for these applications.

Figure 10: Temperature profile for a single 50 µm wide by 70 µm deep by 20 mm long microchannel under different input powers and flow rate of 0.1 mL/min.

Figure 10 shows a comparison of the experimental and simulated temperature profiles for a single 50 µm wide by 70 µm deep by 20 mm long microchannel under different input powers and flow rate of 0.1 mL/min. Zhang et al. (2002). The agreement between the two is extremely good. Notice that at low input powers of 0.61 W and 1.32 W the homogeneous model is sufficient to capture the physics associated with the temperature profile. However for the high input power of 2.12 W, a separated flow model based on the annular flow regime does a better job of simulating the temperature distribution along the channel. This can be better understood by looking at the actual temperature values attained in the channel. For the low input powers the temperature barely reaches 100°C, meaning there is very little boiling. Consequently, the flow is mainly liquid and can be accurately modeled as a homogeneous
flow. Conversely, for the high input power the temperatures throughout the channel are above the boiling point of water. This leads to the presence of a lot of water vapor in the flow. The physics of this type of flow are better captured with a separated two-phase flow formulation, of an annular fashion in this particular case.

Another parameter of extreme importance in the performance of microchannel cooling systems is the pressure drop, Zhang et al. (2002). Figure 11 shows comparison of the measured pressure drop versus that obtained from the homogeneous and annular (separated) two-phase flow models as a function of input power. Again, the agreement between experimental data and models is quite good. Initially as the power is increased the pressure drop decreases. This is a consequence of the decrease in water viscosity due to the increase of liquid temperature with heat. In this region the flow is strictly single phase (liquid water) and as such both the homogeneous and annular formulations collapse to produce exactly the same result. Above a value of around 1.30 W further increasing the input power produces an increase in pressure drop. This behavior corresponds to the onset and continuance of boiling. The increase in pressure results from the change in phase and required acceleration of the low density vapor to preserve mass conservation.

![Figure 11: Pressure drop as a function of input power for a single 50 μm wide by 70 μm deep by 20 mm long microchannel for a flow rate of 0.1 mL/min.](image)

Knowledge of stratified flow is also important in fuel cell applications, albeit in a different fashion, Hidrovo et al. (2004), Steinbrenner et al. (2005). The performance of the fuel cell is not only affected by the overall pressure drop in the channel but also by the reduction in effective area for air flow resulting from the introduction of liquid water. Thus, predicting the extent of the liquid phase in a stratified flow configuration is key in the determination of air flow rate and consequently current output. Figure 12 shows a comparison of the experimental and simulated stratified flow film thickness as a function of inlet air velocity for a 500 μm wide by 45 μm deep microchannel under water injection rate of 100 μL/min, Hidrovo et al. (2004), Steinbrenner et al. (2005). The experimental data was obtained using the fluorescence technique described in the Optical Characterization section. The simulation film thickness was computed using the separated flow model with different closure laws formulations for a stratified flow. The agreement between the model using hybrid friction factor formulations and experimental data is quite good. As expected, film thickness decreases with increased pressure drop and air flow rate in the channel. Notice that for inlet velocity below 5 m/s the film thickness is more than half the total width of the channel (500 μm). This represents a substantial decrease in the effective air flow area with detrimental consequences in fuel cell performance.

![Figure 12: Film thickness versus inlet air flow velocity. The different model simulations correspond to different formulations of the friction factor correlations](image)
we are investigating droplet detachment in hydrophobic channels for fuel cell applications, Hidrovo et al. (2005). Correlations between air flow conditions (pressure drop, velocity) and droplet geometry (size, contact angle) have been established and used as the foundation for the creation of a detachment regime map (Figure 14). Pressure gradient and inertial (form) drag are recognized as the two major contributors to droplet detachment in this map. Whenever one (or both) these forces overcome surface tension, droplet detachment occurs. The transition from the pressure gradient dominated regime to the inertial drag dominated one occurs at \(\text{Re}=200 \).

SUMMARY AND CONCLUSIONS

This manuscript summarizes progress on two-phase flow in microchannels performed at the Stanford Micro Heat Transfer Laboratory (MHTL). The work described here focuses on developing a fundamental understanding of two-phase boiling flows in microchannels for integrated circuit cooling as well as flow behavior and transport for liquid water management in fuel cell applications. The work encompasses the use of novel microfabricated samples with integrated sensory capabilities and matching first order modeling of the different phenomena under investigation. Experimental studies have relied heavily on the use of optical diagnostics techniques to characterize the different flow regimes observed. Among the parameters measured are “quasi-instantaneous” liquid fraction, film thickness and velocity fields. The simulation side has relied heavily on the use and further development of homogeneous and separated two-phase flow models with emphasis on the formulation of physics based closure laws.

This combined approach has allowed characterization of temperature distribution and pressure drop in microchannel boiling under different heat input conditions. Likewise, characterization of film thickness extent under different water and air flow conditions in stratified two-phase flow has been extensively studied. Finally, the detachment criteria leading to the removal of bubbles and droplets from the channel walls have been investigated. Further work in the area of two-phase flow is needed, particularly in terms of transient phenomena.

ACKNOWLEDGMENTS

The authors would like to thank our sponsors, Honda R&D Co., Ltd. and Intel Corporation not only for their support but also for their input, feedback and insight.

Work was performed in part at the Stanford Nanofabrication Facility (a member of the National Nanofabrication Users’ Network) which is supported by the National Science Foundation under Grant ECS-9731293, its lab members, and the industrial members of the Stanford Center for Integrated Systems.
REFERENCES

Kandlikar, S. G. (editor), Proceedings of the First International Conference on Microchannels and Minichannels, April 24-25, 2003, Rochester, NY, ASME.

Goodson, K. E., “Investigation of Two-Phase Transport Phenomena in Microchannels using a Microfabricated Experimental Structure”, *Heat Transfer in Components and Systems for Sustainable Energy Technologies*, April 5-7, 2005, Grenoble, France.

